Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Neural Circuits ; 18: 1430598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184455

RESUMO

Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 µm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.


Assuntos
Vias Auditivas , Ácido Glutâmico , Proteínas da Membrana Plasmática de Transporte de Glicina , Glicina , Colículos Inferiores , Camundongos Endogâmicos CBA , Complexo Olivar Superior , Animais , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Camundongos , Colículos Inferiores/fisiologia , Colículos Inferiores/metabolismo , Colículos Inferiores/citologia , Vias Auditivas/fisiologia , Vias Auditivas/metabolismo , Ácido Glutâmico/metabolismo , Complexo Olivar Superior/fisiologia , Complexo Olivar Superior/metabolismo , Masculino , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
2.
Front Neural Circuits ; 17: 1229746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554670

RESUMO

The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.


Assuntos
Núcleo Coclear , Colículos Inferiores , Camundongos , Animais , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Auditivas/fisiologia , Camundongos Endogâmicos CBA , Neurônios
3.
Hear Res ; 422: 108565, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816890

RESUMO

Idiopathic sudden sensorineural hearing loss (ISSNHL) is a condition affecting 5-30 per 100,000 individuals with the potential to significantly reduce one's quality of life. The true incidence of this condition is not known because it often goes undiagnosed and/or recovers within a few days. ISSNHL is defined as a ≥30 dB loss of hearing over 3 consecutive audiometric octaves within 3 days with no known cause. The disorder is typically unilateral and most of the cases spontaneously recover to functional hearing within 30 days. High frequency losses, ageing, and vertigo are associated with a poorer prognosis. Multiple causes of ISSNHL have been postulated and the most common are vascular obstruction, viral infection, or labyrinthine membrane breaks. Corticosteroids are the standard treatment option but this practice is not without opposition. Post mortem analyses of temporal bones of ISSNHL cases have been inconclusive. This report analyzed ISSNHL studies administering corticosteroids that met strict inclusion criteria and identified a number of methodologic shortcomings that compromise the interpretation of results. We discuss the issues and conclude that the data do not support present treatment practices. The current status on ISSNHL calls for a multi-institutional, randomized, double-blind trial with validated outcome measures to provide science-based treatment guidance.


Assuntos
Corticosteroides , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Orelha Interna , Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Corticosteroides/uso terapêutico , Audiometria , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Súbita/diagnóstico , Perda Auditiva Súbita/tratamento farmacológico , Humanos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Resultado do Tratamento
4.
Front Neural Circuits ; 16: 1123350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685355

RESUMO

[This corrects the article DOI: 10.3389/fncir.2022.1038500.].

5.
Front Neural Circuits ; 16: 1038500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338332

RESUMO

The lateral superior olive (LSO) is a key structure in the central auditory system of mammals that exerts efferent control on cochlear sensitivity and is involved in the processing of binaural level differences for sound localization. Understanding how the LSO contributes to these processes requires knowledge about the resident cells and their connections with other auditory structures. We used standard histological stains and retrograde tracer injections into the inferior colliculus (IC) and cochlea in order to characterize two basic groups of neurons: (1) Principal and periolivary (PO) neurons have projections to the IC as part of the ascending auditory pathway; and (2) lateral olivocochlear (LOC) intrinsic and shell efferents have descending projections to the cochlea. Principal and intrinsic neurons are intermixed within the LSO, exhibit fusiform somata, and have disk-shaped dendritic arborizations. The principal neurons have bilateral, symmetric, and tonotopic projections to the IC. The intrinsic efferents have strictly ipsilateral projections, known to be tonotopic from previous publications. PO and shell neurons represent much smaller populations (<10% of principal and intrinsic neurons, respectively), have multipolar somata, reside outside the LSO, and have non-topographic, bilateral projections. PO and shell neurons appear to have widespread projections to their targets that imply a more diffuse modulatory function. The somata and dendrites of principal and intrinsic neurons form a laminar matrix within the LSO and share quantifiably similar alignment to the tonotopic axis. Their restricted projections emphasize the importance of frequency in binaural processing and efferent control for auditory perception. This study addressed and expanded on previous findings of cell types, circuit laterality, and projection tonotopy in the LSO of the mouse.


Assuntos
Colículos Inferiores , Complexo Olivar Superior , Animais , Camundongos , Núcleo Olivar , Vias Auditivas/fisiologia , Colículos Inferiores/fisiologia , Neurônios , Mamíferos
6.
Front Neurol ; 13: 962227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226085

RESUMO

In the post-natal mouse cochlea, type II spiral ganglion neurons (SGNs) innervating the electromotile outer hair cells (OHCs) of the 'cochlear amplifier' selectively express the type III intermediate filament peripherin gene (Prph). Immunolabeling showed that Prph knockout (KO) mice exhibited disruption of this (outer spiral bundle) afferent innervation, while the radial fiber (type I SGN) innervation of the inner hair cells (~95% of the SGN population) was retained. Functionality of the medial olivocochlear (MOC) efferent innervation of the OHCs was confirmed in the PrphKO, based on suppression of distortion product otoacoustic emissions (DPOAEs) via direct electrical stimulation. However, "contralateral suppression" of the MOC reflex neural circuit, evident as a rapid reduction in cubic DPOAE when noise is presented to the opposite ear in wildtype mice, was substantially disrupted in the PrphKO. Auditory brainstem response (ABR) measurements demonstrated that hearing sensitivity (thresholds and growth-functions) were indistinguishable between wildtype and PrphKO mice. Despite this comparability in sound transduction and strength of the afferent signal to the central auditory pathways, high-intensity, broadband noise exposure (108 dB SPL, 1 h) produced permanent high frequency hearing loss (24-32 kHz) in PrphKO mice but not the wildtype mice, consistent with the attenuated contralateral suppression of the PrphKO. These data support the postulate that auditory neurons expressing Prph contribute to the sensory arm of the otoprotective MOC feedback circuit.

7.
J Neurosci ; 30(42): 14068-79, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20962228

RESUMO

Human bilateral cochlear implant users do poorly on tasks involving interaural time differences (ITD), a cue that provides important benefits to the normal hearing, especially in challenging acoustic environments, yet the precision of neural ITD coding in acutely deafened, bilaterally implanted cats is essentially normal (Smith and Delgutte, 2007a). One explanation for this discrepancy is that the extended periods of binaural deprivation typically experienced by cochlear implant users degrades neural ITD sensitivity, by either impeding normal maturation of the neural circuitry or altering it later in life. To test this hypothesis, we recorded from single units in inferior colliculus of two groups of bilaterally implanted, anesthetized cats that contrast maximally in binaural experience: acutely deafened cats, which had normal binaural hearing until experimentation, and congenitally deaf white cats, which received no auditory inputs until the experiment. Rate responses of only half as many neurons showed significant ITD sensitivity to low-rate pulse trains in congenitally deaf cats compared with acutely deafened cats. For neurons that were ITD sensitive, ITD tuning was broader and best ITDs were more variable in congenitally deaf cats, leading to poorer ITD coding within the naturally occurring range. A signal detection model constrained by the observed physiology supports the idea that the degraded neural ITD coding resulting from deprivation of binaural experience contributes to poor ITD discrimination by human implantees.


Assuntos
Implantes Cocleares , Surdez/congênito , Surdez/terapia , Neurônios/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Idade de Início , Animais , Gatos , Simulação por Computador , Sinais (Psicologia) , Surdez/fisiopatologia , Estimulação Elétrica , Eletrofisiologia , Feminino , Humanos , Masculino , Microeletrodos , Modelos Neurológicos
8.
J Comp Neurol ; 529(11): 2995-3012, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754334

RESUMO

Auditory efferents originate in the central auditory system and project to the cochlea. Although the specific anatomy of the olivocochlear (OC) efferents can vary between species, two types of auditory efferents have been identified based upon the general location of their cell bodies and their distinctly different axon terminations in the organ of Corti. In the mouse, the relatively small somata of the lateral (LOC) efferents reside in the lateral superior olive (LSO), have unmyelinated axons, and terminate around ipsilateral inner hair cells (IHCs), primarily against the afferent processes of type I auditory nerve fibers. In contrast, the larger somata of the medial (MOC) efferents are distributed in the ventral nucleus of the trapezoid body (VNTB), have myelinated axons, and terminate bilaterally against the base of multiple outer hair cells (OHCs). Using in vivo retrograde cell body marking, anterograde axon tracing, immunohistochemistry, and electron microscopy, we have identified a group of efferent neurons in mouse, whose cell bodies reside in the ventral nucleus of the lateral lemniscus (VNLL). By virtue of their location, we call them dorsal efferent (DE) neurons. Labeled DE cells were immuno-negative for tyrosine hydroxylase, glycine, and GABA, but immuno-positive for choline acetyltransferase. Morphologically, DEs resembled LOC efferents by their small somata, unmyelinated axons, and ipsilateral projection to IHCs. These three classes of efferent neurons all project axons directly to the cochlea and exhibit cholinergic staining characteristics. The challenge is to discover the contributions of this new population of neurons to auditory efferent function.


Assuntos
Vias Auditivas/fisiologia , Cóclea/fisiologia , Neurônios Eferentes/fisiologia , Corpo Trapezoide/fisiologia , Animais , Vias Auditivas/ultraestrutura , Cóclea/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Neurônios Eferentes/ultraestrutura , Órgão Espiral/fisiologia , Órgão Espiral/ultraestrutura , Corpo Trapezoide/ultraestrutura
9.
Ageing Res Rev ; 71: 101423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384902

RESUMO

Diabetes (type 2) and sensorineural hearing loss are common health problems manifested with ageing. While both type 1 and type 2 diabetes have been associated with hearing loss, a causal link has been difficult to establish. Individuals with diabetes have twice the incidence of hearing loss compared to those without diabetes and those with prediabetes have a 30% higher rate of hearing loss. Whether hearing loss is associated with diabetes independent of glycemic control remains to be determined. Hearing loss has its own set of risk factors and shares others with diabetes. This review will summarize the complex relationship between diabetes and sensorineural hearing loss.


Assuntos
Diabetes Mellitus Tipo 2 , Perda Auditiva Neurossensorial , Perda Auditiva , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Perda Auditiva/epidemiologia , Perda Auditiva/etiologia , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/etiologia , Humanos
10.
Stem Cells ; 27(10): 2414-26, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19609935

RESUMO

Stem cell grafts have been advocated as experimental treatments for neurological diseases by virtue of their ability to offer trophic support for injured neurons and, theoretically, to replace dead neurons. Human embryonic stem cells (HESCs) are a rich source of neural precursors (NPs) for grafting, but have been questioned for their tendency to form tumors. Here we studied the ability of HESC-derived NP grafts optimized for cell number and differentiation stage prior to transplantation, to survive and stably differentiate and integrate in the basal forebrain (neostriatum) of young adult nude rats over long periods of time (6 months). NPs were derived from adherent monolayer cultures of HESCs exposed to noggin. After transplantation, NPs showed a drastic reduction in mitotic activity and an avid differentiation into neurons that projected via major white matter tracts to a variety of forebrain targets. A third of NP-derived neurons expressed the basal forebrain-neostriatal marker dopamine-regulated and cyclic AMP-regulated phosphoprotein. Graft-derived neurons formed mature synapses with host postsynaptic structures, including dendrite shafts and spines. NPs inoculated in white matter tracts showed a tendency toward glial (primarily astrocytic) differentiation, whereas NPs inoculated in the ventricular epithelium persisted as nestin(+) precursors. Our findings demonstrate the long-term ability of noggin-derived human NPs to structurally integrate tumor-free into the mature mammalian forebrain, while maintaining some cell fate plasticity that is strongly influenced by particular central nervous system (CNS) niches.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/transplante , Neostriado/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Transplante Heterólogo/fisiologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células-Tronco Embrionárias/citologia , Sobrevivência de Enxerto/fisiologia , Cones de Crescimento/fisiologia , Cones de Crescimento/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neostriado/citologia , Neostriado/cirurgia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Ratos , Ratos Nus , Células-Tronco/citologia , Sinapses/ultraestrutura
11.
J Histochem Cytochem ; 68(7): 491-513, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32603211

RESUMO

Expression of olfactory receptors (ORs) in non-olfactory tissues has been widely reported over the last 20 years. Olfactory marker protein (OMP) is highly expressed in mature olfactory sensory neurons (mOSNs) of the olfactory epithelium. It is involved in the olfactory signal transduction pathway, which is mediated by well-conserved components, including ORs, olfactory G protein (Golf), and adenylyl cyclase 3 (AC3). OMP is widely expressed in non-olfactory tissues with an apparent preference for motile cells. We hypothesized that OMP is expressed in compartment-specific locations and co-localize with an OR, Golf, and AC3 in rat epididymal and human-ejaculated spermatozoa. We used immunocytochemistry to examine the expression patterns of OMP and OR6B2 (human OR, served as positive olfactory control) in experimentally induced modes of activation and determine whether there are any observable differences in proteins expression during the post-ejaculatory stages of spermatozoal functional maturation. We found that OMP was expressed in compartment-specific locations in human and rat spermatozoa. OMP was co-expressed with Golf and AC3 in rat spermatozoa and with OR6B2 in all three modes of activation (control, activated, and hyperactivated), and the mode of activation changed the co-expression pattern in acrosomal-reacted human spermatozoa. These observations suggest that OMP expression is a reliable indicator of OR-mediated chemoreception, may be used to identify ectopically expressed ORs, and could participate in second messenger signaling cascades that mediate fertility.


Assuntos
Imuno-Histoquímica/métodos , Proteína de Marcador Olfatório/metabolismo , Espermatozoides/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Masculino , Ratos , Espermatozoides/citologia
12.
Brain Sci ; 10(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936259

RESUMO

Deafness affects the expression and distribution of voltage-dependent potassium channels (Kvs) of central auditory neurons in the short-term, i.e., hours to days, but the consequences in the expression of Kvs after long-term deafness remain unknown. We tested expression and distribution of Kv1.1 and Kv3.1b, key for auditory processing, in the rat cochlear nucleus (CN), and in the inferior colliculus (IC), at 1, 15 and 90 days after mechanical lesion of the cochlea, using a combination of qRT-PCR and Western blot in the whole CN, along with semi-quantitative immunocytochemistry in the AVCN, where the role of both Kvs in excitability control for accurate auditory timing signal processing is well established. Neither Kv1.1/Kv3.1b mRNA or protein expression changed significantly in the CN between 1 and 15 days after deafness. At 90 days post-lesion, however, mRNA and protein expression for both Kvs increased, suggesting that expression regulation of Kv1.1 and Kv3.1b is part of cellular mechanisms for long-term adaptation to auditory input deprivation in the CN. Consistent with these findings, immunocytochemical localization showed increased labeling intensity for both Kvs in the AVCN at day 90 after cochlear lesion, further supporting that up-regulation of Kv1.1 and Kv3.1b in neurons of this CN division, over a long term after auditory deprivation, may be required to adapt intrinsic excitability to altered input. Contrary to findings in the CN, in the IC, expression levels of Kv1.1 and Kv3.1b did not undergo major changes after cochlear lesion. In particular, there was no evidence of long-term up-regulation of neither Kv1.1 or Kv3.1b, supporting that such post-lesion adaptive mechanism may not be needed in the IC. This suggests that post-lesion plastic adaptations to auditory input deprivation are not stereotypical along the auditory pathway.

13.
Hear Res ; 397: 107976, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32591097

RESUMO

Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods-when plasticity facilitates the optimization of neural circuits in concert with the external environment-and in adulthood-when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment.


Assuntos
Perda Auditiva , Córtex Auditivo , Vias Auditivas , Surdez , Humanos , Plasticidade Neuronal , Zumbido
14.
Hear Res ; 364: 104-117, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29598838

RESUMO

Reductions in sound-evoked activity in the auditory nerve due to hearing loss have been shown to cause pathological changes in central auditory structures. Hearing loss due strictly to the aging process are less well documented. In this study of CBA/CaH mice, we provide evidence for age-related pathology in the endbulb of Held, a large axosomatic ending arising from myelinated auditory nerve fibers. Endbulbs are known to be involved in the processing of temporal cues used for sound localization and speech comprehension. Hearing thresholds as measured by auditory brainstem response (ABR) thresholds remained stable up to one year, whereas suprathreshold amplitudes of early ABR waves decreased by up to 50% in older mice, similar to that reported for age-related cochlear synaptopathy (Sergeyenko et al., 2013). The reduction of ABR response magnitude with age correlated closely in time with the gradual atrophy of endbulbs of Held, and is consistent with the hypothesis that endbulb integrity is dependent upon normal levels of spike activity in the auditory nerve. These results indicate that central auditory pathologies emerge as consequence of so-called "hidden" hearing loss and suggest that such brain changes require consideration when devising therapeutic interventions.


Assuntos
Doenças Auditivas Centrais/fisiopatologia , Limiar Auditivo , Nervo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Presbiacusia/fisiopatologia , Estimulação Acústica , Fatores Etários , Animais , Doenças Auditivas Centrais/patologia , Doenças Auditivas Centrais/psicologia , Comportamento Animal , Nervo Coclear/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos CBA , Presbiacusia/patologia , Presbiacusia/psicologia
15.
J Comp Neurol ; 504(5): 583-98, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17701985

RESUMO

The lateral reticular nucleus (LRN) resides in the rostral medulla and caudal pons, is implicated in cardiovascular regulation and cranial nerve reflexes, and gives rise to mossy fibers in the cerebellum. Retrograde tracing data revealed that medium-sized multipolar cells from the magnocellular part of the LRN project to the cochlear nucleus (CN). We sought to characterize the LRN projection to the CN using BDA injections. Anterogradely labeled terminals in the ipsilateral CN appeared as boutons and mossy fibers, and were examined with light and electron microscopy. The terminal field in the CN was restricted to the granule cell domain (GCD), specifically in the superficial layer along the anteroventral CN and in the granule cell lamina. Electron microscopy showed that the smallest LRN boutons formed 1-3 synapses, and as boutons increased in size, they formed correspondingly more synapses. The largest boutons were indistinguishable from the smallest mossy fibers, and the largest mossy fiber exhibited 15 synapses. Synapses were asymmetric with round vesicles and formed against thin dendritic profiles characterized by plentiful microtubules and the presence of fine filopodial extensions that penetrated the ending. These structural features of the postsynaptic target are characteristic of the terminal dendritic claw of granule cells. LRN projections are consistent with known organizational principles of non-auditory inputs to the GCD.


Assuntos
Núcleo Coclear/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Amidinas/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Núcleo Coclear/ultraestrutura , Dextranos/metabolismo , Núcleos Intralaminares do Tálamo/ultraestrutura , Microscopia Eletrônica de Transmissão/tendências , Fibras Nervosas/ultraestrutura , Vias Neurais/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ratos
16.
Mol Cell Biol ; 24(20): 9137-51, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15456885

RESUMO

Previously, we identified PHR1 as an abundantly expressed gene in photoreceptors and showed that it encodes four isoforms, each with N-terminal pleckstrin homology (PH) and C-terminal transmembrane domains. To better understand PHR1 function and expression, we made a Phr1 null mouse by inserting a beta-galactosidase/neor cassette into exon 3. In addition to photoreceptors, we found abundant expression of specific Phr1 splice forms in olfactory receptor neurons and vestibular and cochlear hair cells. We also found Phr1 expression in cells with a possible sensory function, including peripheral retinal ganglion cells, cochlear interdental cells, and neurons of the circumventricular organ. Despite this discrete expression in known and putative sensory neurons, mice lacking PHR1 do not have overt sensory deficits.


Assuntos
Proteínas de Membrana/metabolismo , Neurônios Aferentes/fisiologia , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Orelha Interna/citologia , Orelha Interna/metabolismo , Eletrofisiologia , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Septo Nasal/citologia , Septo Nasal/metabolismo , Neurônios Aferentes/citologia , Fenótipo , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retina/citologia , Retina/metabolismo , Sensação/fisiologia , Alinhamento de Sequência
17.
Hear Res ; 343: 34-49, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27421755

RESUMO

Auditory efferent neurons reside in the brain and innervate the sensory hair cells of the cochlea to modulate incoming acoustic signals. Two groups of efferents have been described in mouse and this report will focus on the medial olivocochlear (MOC) system. Electrophysiological data suggest the MOC efferents function in selective listening by differentially attenuating auditory nerve fiber activity in quiet and noisy conditions. Because speech understanding in noise is impaired in age-related hearing loss, we asked whether pathologic changes in input to MOC neurons from higher centers could be involved. The present study investigated the anatomical nature of descending projections from the inferior colliculus (IC) to MOCs in 3-month old mice with normal hearing, and in 6-month old mice with normal hearing (CBA/CaH), early onset progressive hearing loss (DBA/2), and congenital deafness (homozygous Shaker-2). Anterograde tracers were injected into the IC and retrograde tracers into the cochlea. Electron microscopic analysis of double-labelled tissue confirmed direct synaptic contact from the IC onto MOCs in all cohorts. These labelled terminals are indicative of excitatory neurotransmission because they contain round synaptic vesicles, exhibit asymmetric membrane specializations, and are co-labelled with antibodies against VGlut2, a glutamate transporter. 3D reconstructions of the terminal fields indicate that in normal hearing mice, descending projections from the IC are arranged tonotopically with low frequencies projecting laterally and progressively higher frequencies projecting more medially. Along the mediolateral axis, the projections of DBA/2 mice with acquired high frequency hearing loss were shifted medially towards expected higher frequency projecting regions. Shaker-2 mice with congenital deafness had a much broader spatial projection, revealing abnormalities in the topography of connections. These data suggest that loss in precision of IC directed MOC activation could contribute to impaired signal detection in noise.


Assuntos
Cóclea/inervação , Surdez/fisiopatologia , Audição , Colículos Inferiores/fisiopatologia , Núcleo Olivar/fisiopatologia , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Percepção Auditiva , Comportamento Animal , Surdez/metabolismo , Surdez/patologia , Surdez/psicologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Predisposição Genética para Doença , Audição/genética , Colículos Inferiores/metabolismo , Colículos Inferiores/ultraestrutura , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miosinas/deficiência , Miosinas/genética , Técnicas de Rastreamento Neuroanatômico , Núcleo Olivar/metabolismo , Núcleo Olivar/ultraestrutura , Fenótipo , Detecção de Sinal Psicológico , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
18.
Hear Res ; 343: 14-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473502

RESUMO

Studies of congenital and early-onset deafness have demonstrated that an absence of peripheral sound-evoked activity in the auditory nerve causes pathological changes in central auditory structures. The aim of this study was to establish whether progressive acquired hearing loss could lead to similar brain changes that would degrade the precision of signal transmission. We used complementary physiologic hearing tests and microscopic techniques to study the combined effect of both magnitude and duration of hearing loss on one of the first auditory synapses in the brain, the endbulb of Held (EB), along with its bushy cell (BC) target in the anteroventral cochlear nucleus. We compared two hearing mouse strains (CBA/Ca and heterozygous shaker-2+/-) against a model of early-onset progressive hearing loss (DBA/2) and a model of congenital deafness (homozygous shaker-2-/-), examining each strain at 1, 3, and 6 months of age. Furthermore, we employed a frequency model of the mouse cochlear nucleus to constrain our analyses to regions most likely to exhibit graded changes in hearing function with time. No significant differences in the gross morphology of EB or BC structure were observed in 1-month-old animals, indicating uninterrupted development. However, in animals with hearing loss, both EBs and BCs exhibited a graded reduction in size that paralleled the hearing loss, with the most severe pathology seen in deaf 6-month-old shaker-2-/- mice. Ultrastructural pathologies associated with hearing loss were less dramatic: minor changes were observed in terminal size but mitochondrial fraction and postsynaptic densities remained relatively stable. These results indicate that acquired progressive hearing loss can have consequences on auditory brain structure, with prolonged loss leading to greater pathologies. Our findings suggest a role for early intervention with assistive devices in order to mitigate long-term pathology and loss of function.


Assuntos
Nervo Coclear/ultraestrutura , Núcleo Coclear/ultraestrutura , Perda Auditiva/patologia , Audição , Sinapses/ultraestrutura , Estimulação Acústica , Fatores Etários , Animais , Limiar Auditivo , Comportamento Animal , Nervo Coclear/fisiopatologia , Núcleo Coclear/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Predisposição Genética para Doença , Audição/genética , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Perda Auditiva/psicologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miosinas/deficiência , Miosinas/genética , Fenótipo , Índice de Gravidade de Doença , Fatores de Tempo
19.
J Comp Neurol ; 525(4): 773-793, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27513294

RESUMO

Ascending projections of the dorsal cochlear nucleus (DCN) target primarily the contralateral inferior colliculus (IC). In turn, the IC sends bilateral descending projections back to the DCN. We sought to determine the nature of these descending axons in order to infer circuit mechanisms of signal processing at one of the earliest stages of the central auditory pathway. An anterograde tracer was injected in the IC of CBA/Ca mice to reveal terminal characteristics of the descending axons. Retrograde tracer deposits were made in the DCN of CBA/Ca and transgenic GAD67-EGFP mice to investigate the cells giving rise to these projections. A multiunit best frequency was determined for each injection site. Brains were processed by using standard histologic methods for visualization and examined by fluorescent, brightfield, and electron microscopy. Descending projections from the IC were inferred to be excitatory because the cell bodies of retrogradely labeled neurons did not colabel with EGFP expression in neurons of GAD67-EGFP mice. Furthermore, additional experiments yielded no glycinergic or cholinergic positive cells in the IC, and descending projections to the DCN were colabeled with antibodies against VGluT2, a glutamate transporter. Anterogradely labeled endings in the DCN formed asymmetric postsynaptic densities, a feature of excitatory neurotransmission. These descending projections to the DCN from the IC were topographic and suggest a feedback pathway that could underlie a frequency-specific enhancement of some acoustic signals and suppression of others. The involvement of this IC-DCN circuit is especially noteworthy when considering the gating of ascending signal streams for auditory processing. J. Comp. Neurol. 525:773-793, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Núcleo Coclear/fisiologia , Colículos Inferiores/fisiologia , Animais , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Núcleo Coclear/anatomia & histologia , Eletrofisiologia , Imunofluorescência , Colículos Inferiores/anatomia & histologia , Camundongos
20.
Cell Rep ; 21(6): 1624-1638, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117566

RESUMO

The archetypal T cell-dependent antigen is sheep red blood cells (SRBCs), which have defined much of what we know about humoral immunity. Early studies using solubilized or sonicated SRBCs argued that the intact structure of SRBCs was important for optimal antibody responses. However, the reason for the requirement of intact SRBCs for the response to polyvalent protein antigen remained unknown. Here, we report that the immune response to SRBCs is driven by cytosolic recognition of SRBC RNA through the RIG-I-like receptor (RLR)-mitochondrial anti-viral signaling adaptor (MAVS) pathway. Following the uptake of SRBCs by antigen-presenting cells, the MAVS signaling complex governs the differentiation of both T follicular cells and antibody-producing B cells. Importantly, the involvement of the RLR-MAVS pathway precedes that of endosomal Toll-like receptor pathways, yet both are required for optimal effect.


Assuntos
Eritrócitos/imunologia , RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Imunidade Humoral/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Poli I-C/farmacologia , Ovinos , Transdução de Sinais , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA