Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955047

RESUMO

Effective monitoring of river water quality is required for long-term water resource management. Convolutional Neural Networks and Gated Recurrent Unit-based water quality monitoring (CNGRU-WQM) were used in this investigation to develop a comprehensive monitoring system along the Vaigai River. The system was designed to collect real-time data on several crucial water quality parameters. The collected characteristics encompassed factors like water pollution levels, turbidity, pH readings, temperature, and total dissolved solids, offering a comprehensive view of river water quality. The monitoring system was methodically set up, with sensors strategically positioned at various locations along the river. This ensured that data collection would take place at regular intervals. The CNGRU-WQM model achieved a validation accuracy of 97.86%, surpassing the performance of other state-of-the-art approaches. Particularly noteworthy is the fact that the actual use of this system incorporates real-time warnings, which enable stakeholders to be instantly informed if water quality measurements surpass pre-set criteria. The study's contributions include its efficient river water quality monitoring system, which encompasses a variety of indicators, and its ability to significantly affect environmental conservation efforts by offering a helpful tool for informed decision-making and timely interventions.


Assuntos
Monitoramento Ambiental , Redes Neurais de Computação , Rios , Qualidade da Água , Rios/química , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA