Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362121

RESUMO

Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host-parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.


Assuntos
Copépodes , Doenças dos Peixes , Ftirápteros , Animais , Copépodes/genética , Organotiofosfatos , Salmão , Doenças dos Peixes/parasitologia
2.
Fish Shellfish Immunol ; 117: 169-178, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34389379

RESUMO

It is known that iron transporter proteins and their regulation can modulate the fish's immune system, suggesting these proteins as a potential candidate for fish vaccines. Previous studies have evidenced the effects of Atlantic salmon immunized with the chimeric iron-related protein named IPath® against bacterial and ectoparasitic infections. The present study aimed to explore the transcriptome modulation and the morphology of the sea louse Caligus rogercresseyi in response to Atlantic salmon injected with IPath®. Herein, Atlantic salmon were injected with IPath® and challenged to sea lice in controlled laboratory conditions. Then, female adults were collected after 25 days post-infection for molecular and morphological evaluation. Transcriptome analysis conducted in lice collected from immunized fish revealed high modulation of transcripts compared with the control groups. Notably, the low number of up/downregulated transcripts was mainly found in lice exposed to the IPath® fish group. Among the top-25 differentially expressed genes, Vitellogenin, Cytochrome oxidases, and proteases genes were strongly downregulated, suggesting that IPath® can alter lipid transport, hydrogen ion transmembrane transport, and proteolysis. The morphological analysis in lice collected from IPath® fish revealed abnormal embryogenesis and inflammatory processes of the genital segment. Furthermore, head kidney, spleen, and skin were also analyzed in immunized fish to evaluate the transcription expression of immune and iron homeostasis-related genes. The results showed downregulation of TLR22, MCHII, IL-1ß, ALAs, HO, BLVr, GSHPx, and Ferritin genes in head kidney and skin tissues; meanwhile, those genes did not show significant differences in spleen tissue. Overall, our findings suggest that IPath® can be used to enhance the fish immune response, showing a promissory commercial application against lice infections.


Assuntos
Copépodes/genética , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Salmo salar/parasitologia , Transcriptoma , Vacinas/administração & dosagem , Animais , Ectoparasitoses/veterinária , Feminino , Ferritinas/genética , Salmo salar/imunologia , Transferrina/genética , Vacinação
3.
Noncoding RNA ; 7(4)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34940757

RESUMO

The role of trypsin genes in pharmacological sensitivity has been described in numerous arthropod species, including the sea louse Caligus rogercresseyi. This ectoparasite species is mainly controlled by xenobiotic drugs in Atlantic salmon farming. However, the post-transcriptional regulation of trypsin genes and the molecular components involved in drug response remain unclear. In particular, the miRNA bantam family has previously been associated with drug response in arthropods and is also found in C. rogercresseyi, showing a high diversity of isomiRs. This study aimed to uncover molecular interactions among trypsin genes and bantam miRNAs in the sea louse C. rogercresseyi in response to delousing drugs. Herein, putative mRNA/miRNA sequences were identified and localized in the C. rogercresseyi genome through genome mapping and blast analyses. Expression analyses were obtained from the mRNA transcriptome and small-RNA libraries from groups with differential sensitivity to three drugs used as anti-sea lice agents: azamethiphos, deltamethrin, and cypermethrin. The validation was conducted by qPCR analyses and luciferase assay of selected bantam and trypsin genes identified from in silico transcript prediction. A total of 60 trypsin genes were identified in the C. rogercresseyi genome, and 39 bantam miRNAs were differentially expressed in response to drug exposure. Notably, expression analyses and correlation among values obtained from trypsin and bantam revealed an opposite trend and potential binding sites with significant ΔG values. The luciferase assay showed a reduction of around 50% in the expression levels of the trypsin 2-like gene, which could imply that this gene is a potential target for bantam. The role of trypsin genes and bantam miRNAs in the pharmacological sensitivity of sea lice and the use of miRNAs as potential markers in these parasites are discussed in this study.

4.
Sci Total Environ ; 764: 142867, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33071116

RESUMO

Wastewater-Based Epidemiology is a tool to face and mitigate COVID-19 outbreaks by evaluating conditions in a specific community. This study aimed to analyze the microbiome profiles using nanopore technology for full-length 16S rRNA sequencing in wastewater samples collected from a penitentiary (P), a residential care home (RCH), and a quarantine or health care facilities (HCF). During the study, the wastewater samples from the RCH and the P were negative for SARS-CoV-2 based on qPCRs, except during the fourth week when was detected. Unexpectedly, the wastewater microbiome from RCH and P prior to week four was correlated with the samples collected from the HCF, suggesting a core bacterial community is expelled from the digest tract of individuals infected with SARS-CoV-2. The microbiota of wastewater sample positives for SARS-CoV-2 was strongly associated with enteric bacteria previously reported in patients with risk factors for COVID-19. We provide novel evidence that the wastewater microbiome associated with gastrointestinal manifestations appears to precede the SARS-CoV-2 detection in sewage. This finding suggests that the wastewaters microbiome can be applied as an indicator of community-wide SARS-CoV-2 surveillance.


Assuntos
COVID-19 , Microbiota , Humanos , RNA Ribossômico 16S/genética , SARS-CoV-2 , Águas Residuárias
5.
Genes (Basel) ; 11(8)2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726954

RESUMO

Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. This pathogen is mainly controlled by immersion baths with delousing drugs, which can lead to resistant traits selection in lice populations. Bioassays are commonly used to assess louse drug sensitivity, but the current procedures may mask relevant molecular responses. This study aimed to discover novel coding genes and non-coding RNAs that could evidence drug sensitivity at the genomic level. Sea lice samples from populations with contrasting sensitivity to delousing drugs were collected. Bioassays using azamethiphos, cypermethrin, and deltamethrin drugs were conducted to evaluate the sensitivity and to collect samples for RNA-sequencing. Transcriptome sequencing was conducted on samples exposed to each drug to evaluate the presence of coding and non-coding RNAs associated with the response of these compounds. The results revealed specific transcriptome patterns in lice exposed to azamethiphos, deltamethrin, and cypermethrin drugs. Enrichment analyses of Gene Ontology terms showed specific biological processes and molecular functions associated with each delousing drug analyzed. Furthermore, novel long non-coding RNAs (lncRNAs) were identified in C. rogercresseyi and tightly linked to differentially expressed coding genes. A significant correlation between gene transcription patterns and phenotypic effects was found in lice collected from different salmon farms with contrasting drug treatment efficacies. The significant correlation among gene transcription patterns with the historical background of drug sensitivity suggests novel molecular mechanisms of pharmacological resistance in lice populations.


Assuntos
Antiparasitários/farmacologia , Copépodes/efeitos dos fármacos , Copépodes/genética , Doenças dos Peixes/parasitologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Salmão/parasitologia , Animais , Chile , Resistência a Medicamentos/genética , Interações Hospedeiro-Parasita , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA