Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108826

RESUMO

The transactive response DNA-binding protein (TARDBP/TDP-43) is known to stabilize the anti-HIV-1 factor, histone deacetylase 6 (HDAC6). TDP-43 has been reported to determine cell permissivity to HIV-1 fusion and infection acting on tubulin-deacetylase HDAC6. Here, we studied the functional involvement of TDP-43 in the late stages of the HIV-1 viral cycle. The overexpression of TDP-43, in virus-producing cells, stabilized HDAC6 (i.e., mRNA and protein) and triggered the autophagic clearance of HIV-1 Pr55Gag and Vif proteins. These events inhibited viral particle production and impaired virion infectiveness, observing a reduction in the amount of Pr55Gag and Vif proteins incorporated into virions. A nuclear localization signal (NLS)-TDP-43 mutant was not able to control HIV-1 viral production and infection. Likewise, specific TDP-43-knockdown reduced HDAC6 expression (i.e., mRNA and protein) and increased the expression level of HIV-1 Vif and Pr55Gag proteins and α-tubulin acetylation. Thus, TDP-43 silencing favored virion production and enhanced virus infectious capacity, thereby increasing the amount of Vif and Pr55Gag proteins incorporated into virions. Noteworthy, there was a direct relationship between the content of Vif and Pr55Gag proteins in virions and their infection capacity. Therefore, for TDP-43, the TDP-43/HDAC6 axis could be considered a key factor to control HIV-1 viral production and virus infectiveness.


Assuntos
Proteínas de Ligação a DNA , Produtos do Gene gag , Produtos do Gene gag/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685911

RESUMO

HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Citoesqueleto , Microtúbulos , Citoesqueleto de Actina , Filamentos Intermediários
3.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607037

RESUMO

Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/fisiologia , Desacetilase 6 de Histona , Tubulina (Proteína) , Microtúbulos , RNA , Autofagia
4.
Cell Rep ; 24(7): 1738-1746, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110631

RESUMO

The rapid transit from hypoxia to normoxia in the lung that follows the first breath in newborn mice coincides with alveolar macrophage (AM) differentiation. However, whether sensing of oxygen affects AM maturation and function has not been previously explored. We have generated mice whose AMs show a deficient ability to sense oxygen after birth by deleting Vhl, a negative regulator of HIF transcription factors, in the CD11c compartment (CD11cΔVhl mice). VHL-deficient AMs show an immature-like phenotype and an impaired self-renewal capacity in vivo that persists upon culture ex vivo. VHL-deficient phenotype is intrinsic in AMs derived from monocyte precursors in mixed bone marrow chimeras. Moreover, unlike control Vhlfl/fl, AMs from CD11cΔVhl mice do not reverse pulmonary alveolar proteinosis when transplanted into Csf2rb-/- mice, demonstrating that VHL contributes to AM-mediated surfactant clearance. Thus, our results suggest that optimal AM terminal differentiation, self-renewal, and homeostatic function requires their intact oxygen-sensing capacity.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Hipóxia/genética , Macrófagos Alveolares/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antígenos CD11/genética , Antígenos CD11/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Subunidade beta Comum dos Receptores de Citocinas/deficiência , Subunidade beta Comum dos Receptores de Citocinas/genética , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/farmacologia , Receptores de IgG/genética , Receptores de IgG/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
5.
Stem Cell Res Ther ; 7(1): 100, 2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27472922

RESUMO

BACKGROUND: The inability of the adult mammalian heart to replace cells lost after severe cardiac injury compromises organ function. Although the heart is one of the least regenerative organs in the body, evidence accumulated in recent decades indicates a certain degree of renewal after injury. We have evaluated the role of cardiac Bmi1 (+) progenitor cells (Bmi1-CPC) following acute myocardial infarction (AMI). METHODS: Bmi1 (Cre/+);Rosa26 (YFP/+) (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1 (+) cells. YFP(+) cells were tracked following myocardial infarction. Additionally, whole transcriptome analysis of isolated YFP(+) cells was performed in unchallenged hearts and after myocardial infarction. RESULTS: Deep-sequencing analysis of Bmi1-CPC from unchallenged hearts suggests that this population expresses high levels of pluripotency markers. Conversely, transcriptome evaluation of Bmi1-CPC following AMI shows a rich representation of genes related to cell proliferation, movement, and cell cycle. Lineage-tracing studies after cardiac infarction show that the progeny of Bmi1-expressing cells contribute to de novo cardiomyocytes (CM) (13.8 ± 5 % new YFP(+) CM compared to 4.7 ± 0.9 % in age-paired non-infarcted hearts). However, apical resection of TM-induced day 1 Bmi1-YFP pups indicated a very minor contribution of Bmi1-derived cells to de novo CM. CONCLUSIONS: Cardiac Bmi1 progenitor cells respond to cardiac injury, contributing to the generation of de novo CM in the adult mouse heart.


Assuntos
Infarto do Miocárdio/genética , Miócitos Cardíacos/citologia , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Regeneração/genética , Células-Tronco/citologia , Transcriptoma , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Rastreamento de Células , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Complexo Repressor Polycomb 1/agonistas , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA