Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675007

RESUMO

The obtention of amorphous solid dispersions (ASDs) of mycophenolic acid (MPA) in poly(ε-caprolactone) (PCL) is reported in this paper. An improvement in the bioavailability of the drug is possible thanks to the favorable specific interactions occurring in this system. Differential scanning calorimetry (DSC) was used to investigate the miscibility of PCL/MPA blends, measuring glass transition temperature (Tg) and analyzing melting point depression to obtain a negative interaction parameter, which indicates the development of favorable inter-association interactions. Fourier transform infrared spectroscopy (FTIR) was used to analyze the specific interaction occurring in the blends. Drug release measurements showed that at least 70% of the drug was released by the third day in vitro in all compositions. Finally, preliminary in vitro cell culture experiments showed a decreased number of cancerous cells over the scaffolds containing MPA, presumably arising from the anti-cancer activity attributable to MPA.

2.
J Mater Chem B ; 9(20): 4219-4229, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33998613

RESUMO

This paper reports the obtention of amorphous solid dispersions (ASDs) of xanthohumol (XH) in PCL containing up to 50 wt% of the bioactive compound in the amorphous form thanks to the advantageous specific interactions established in this system. The miscibility of the PCL/XH blends was investigated using DSC. Melting point depression analysis yielded a negative interaction parameter indicating the occurrence of favorable inter-association interactions. XRD analyses performed at room temperature agree with the crystallinity results obtained on the heating runs performed by DSC. FTIR spectroscopy reveals strong C[double bond, length as m-dash]OO-H specific interactions between the hydroxyl groups of XH and the carbonyl groups of PCL. The AFM analysis of the blends obtained by spin-coating shows the variation of crystalline morphology with composition. Finally, tensile tests reveal high toughness retention for the blends in which XH can be dispersed in the amorphous form (containing up to 50 wt% XH). In summary, PCL is a convenient matrix to disperse XH in the amorphous form, bringing the possibility of obtaining completely amorphous bioactive materials suitable for the development of non-stiff biomedical devices.


Assuntos
Materiais Biocompatíveis/química , Flavonoides/química , Poliésteres/química , Propiofenonas/química , Físico-Química , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Porosidade , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA