Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255995

RESUMO

Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neovascularização Patológica/tratamento farmacológico , Membrana Basal , Encéfalo , Divisão Celular , Neoplasias/tratamento farmacológico
2.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36394451

RESUMO

Six actinobacterial strains isolated from diverse legume tissues collected in various locations in Spain were characterized to determine their taxonomic status. Using 16S rRNA gene sequencing, the strains were primarily identified as members of the genus Micromonospora with more than 99 % similarity. Digital DNA-DNA hybridization values and average nucleotide identities between the six strains and the nearest type strains confirmed that each strain represented a novel species. Genome sequences were analysed to infer their metabolic profiles, their potential to produce secondary metabolites and plant growth promoting features. Chemotaxonomic and physiological studies were carried out to complete the phenotypic characterization and to distinguish the new Micromonospora species. The genomic and phenotypic characterization of the Micromonospora strains strongly support their classification as representatives of new species with the following names: Micromonospora alfalfae sp. nov., Micromonospora cabrerizensis sp. nov., Micromonospora foliorum sp. nov., Micromonospora hortensis sp. nov., Micromonospora salmantinae sp. nov. and Micromonospora trifolii sp. nov., with the type strains MED01T, LAH09T, PSH25T, NIE111T, PSH03T and NIE79T, respectively.


Assuntos
Fabaceae , Micromonospora , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Filogenia , Análise de Sequência de DNA , Composição de Bases , Ácidos Graxos/química , Verduras
3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36256446

RESUMO

The taxonomic status of two Gordonia strains, designated BEN371 and CON9T, isolated from stable foams on activated sludge plants was the subject of a polyphasic study which also included the type strains of Gordonia species and three authenticated Gordonia amarae strains recovered from such foams. Phylogenetic analyses of 16S rRNA gene sequences showed that these isolates formed a compact cluster suggesting a well-supported lineage together with a second branch containing the G. amarae strains. A phylogenomic tree based on sequences of 92 core genes extracted from whole genome sequences of the isolates, the G. amarae strains and Gordonia type strains confirmed the assignment of the isolates and the G. amarae strains to separate but closely associated lineages. Average nucleotide index (ANI) and digital DNA-DNA hybridisation (dDDH) similarities showed that BEN371 and CON9T belonged to the same species and had chemotaxonomic and morphological features consistent with their assignment to the genus Gordonia. The isolates and the G. amarae strains were distinguished using a range of phenotypic features and by low ANI and dDDH values of 84.2 and 27.0 %, respectively. These data supplemented with associated genome characteristics show that BEN371 and CON9T represent a novel species of the genus Gordonia. The name proposed for members of this taxon is Gordonia pseudamarae sp. nov. with isolate CON9T (=DSM 43602T=JCM 35249T) as the type strain.


Assuntos
Actinobacteria , Bactéria Gordonia , Purificação da Água , Esgotos/microbiologia , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Ácidos Graxos/química , Nucleotídeos
4.
Int J Syst Evol Microbiol ; 70(9): 5172-5176, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32915125

RESUMO

The original type strains of Agrobacterium radiobacter and Agrobacterium tumefaciens recorded in the eighth edition of Bergey's Manual of Determinative Bacteriology published in 1974 were NCIB 9042T and ATCC 4720T, respectively. However, in the list of the valid names of bacteria compiled in 1980, both strains were changed, A. radiobacter NCIB 9042T to ATCC 19358T and A. tumefaciens ATCC 4720T to ATCC 23308T. These changes were unjustified, particularly in the case of A. tumefaciens whose type strain was replaced by another strain from the same collection, although the original type strain ATCC 4720T was never lost and it is currently available in several culture collections. Therefore, we request that the type strain of A. tumefaciens be corrected from ATCC 23308T to ATCC 4720T.


Assuntos
Agrobacterium tumefaciens/classificação , Filogenia , Terminologia como Assunto
5.
Adv Exp Med Biol ; 1073: 125-135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236841

RESUMO

Urine is a biological fluid that can be collected noninvasively in relatively large quantities which can be used for the search of biomarkers of disease, both diseases of the urological tract and systemic diseases. One of the most important aspects in proteomic studies is sample treatment before further analysis. Methods of preparation of a urine sample depend on the techniques that will be used later for separation and identification of the proteins. Also, urine preparation should be as simple as possible to increase reproducibility. Normal urine has a much diluted protein concentration with a high-salt content, which interferes with proteomic analysis. Thus, an initial step in the handling of urine sample should be to concentrate and eliminate salts. As range of protein concentrations in urine spans several orders of magnitude, effective proteomic analyses require either removal of most abundant protein or enrichment of the less abundant ones. In this chapter, we discuss the aspects related to the collection and treatment of urine for proteomic studies.


Assuntos
Proteômica , Manejo de Espécimes/métodos , Urinálise/métodos , Biomarcadores/urina , Humanos , Proteínas/análise , Reprodutibilidade dos Testes
6.
Enferm Infecc Microbiol Clin ; 35(5): 303-313, 2017 May.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28108122

RESUMO

MALDI-TOF mass spectrometry is now a routine resource in Clinical Microbiology, because of its speed and reliability in the identification of microorganisms. Its performance in the identification of bacteria and yeasts is perfectly contrasted. The identification of mycobacteria and moulds is more complex, due to the heterogeneity of spectra within each species. The methodology is somewhat more complex, and expanding the size of species libraries, and the number of spectra of each species, will be crucial to achieve greater efficiency. Direct identification from blood cultures has been implemented, since its contribution to the management of severe patients is evident, but its application to other samples is more complex. Chromogenic media have also contributed to the rapid diagnosis in both bacteria and yeast, since they accelerate the diagnosis, facilitate the detection of mixed cultures and allow rapid diagnosis of resistant species.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Técnicas de Tipagem Micológica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Líquidos Corporais/microbiologia , Compostos Cromogênicos , Meios de Cultura , Fungos/classificação , Fungos/isolamento & purificação , Humanos , Micoses/microbiologia , Manejo de Espécimes , Coloração e Rotulagem , Fatores de Tempo
7.
Int J Syst Evol Microbiol ; 65(7): 2337-2340, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25888545

RESUMO

The species Seliberia stellata was described in 1963 and the name validly published in 1980. Its type strain, INMI N-9(T), was deposited in the VKM collection by one of the authors reporting its 5S rRNA gene sequence. Based on the analysis of this sequence, the currently distributed strains VKM B-1340 and CECT 7960 are not the original type strain of Seliberia stellata. A 16S rRNA gene sequence analysis of strain CECT 7960 had previously shown that this strain belongs to the species Bradyrhizobium betae, and this result was confirmed in the present paper by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS analysis for both CECT 7960 and VKM B-1340. Therefore, we propose that the Judicial Commission consider the following. (1) That the organism currently deposited as VKM B-1340 and CECT 7960 be recognized as a member of the species Bradyrhizobium betae. (2) That the organism deposited as VKM B-1340 and CECT 7960 does not represent the type strain of the species Seliberia stellata. (3) To place the species name Seliberia stellataAristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names if a suitable replacement strain, or a neotype, cannot be found within two years of publication of this Request (Rule 18c). (4) To place the genus name SeliberiaAristovskaya and Parinkina 1963 (Approved Lists 1980) on the list of rejected names (Recommendation 20d) if a suitable replacement type strain or a neotype for the type species of the genus SeliberiaAristovskaya and Parinkina 1963 (Approved Lists 1980) is not identified as indicated in point (3).


Assuntos
Hyphomicrobiaceae/classificação , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 5S/genética , Análise de Sequência de DNA , Terminologia como Assunto
8.
Syst Appl Microbiol ; 47(4): 126517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772266

RESUMO

The symbiovar mediterranense of Sinorhizobium meliloti was initially found in Phaseolus vulgaris nodules in Tunisia and in an eastern location of Lanzarote (Canary Islands). Here we show that the symbiovar mediterranense of S. meliloti also nodulates P. vulgaris in two western locations of this Island. The analyses of the symbiotic nodA and nodC genes reveal the complexity of the symbiovar mediterranense which encompasses strains belonging to several phylogenetic lineages and clusters. The comparison of the nodA and nodC phylogenies showed that the nodC was the most resolutive phylogenetic marker for the delineation of Sinorhizobium symbiovars. Considering that the similarity of this gene within several symbiovars, particularly mediterranense, is around 95 %, the cut-off value for their differentiation should be lower. Considering that a nodC gene cut-off similarity value of around 92 % is accepted for the genus Bradyrhizobium and that the symbiovar concept is identical in all rhizobial genera, we propose to apply this value for symbiovars delineation within all these genera. Therefore, using this cut-off value for the nodC gene analysis of Sinorhizobium symbiovars, we propose to merge the symbiovars aegeanense and fredii into the single symbiovar fredii and to define four novel symbiovars with the names asiaense, culleni, sudanense and tunisiaense.


Assuntos
Proteínas de Bactérias , Phaseolus , Filogenia , Sinorhizobium meliloti , Simbiose , Phaseolus/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/classificação , Proteínas de Bactérias/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Tunísia , N-Acetilglucosaminiltransferases/genética , DNA Bacteriano/genética , Aciltransferases
9.
Electrophoresis ; 34(17): 2473-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23784626

RESUMO

Urine is a suitable biological fluid to look for markers of physiological and pathological processes, including renal and nonrenal diseases. In addition, it is an optimal body sample for diagnosis, because it is easily obtained without invasive procedures and can be sampled in large quantities at almost any time. Rats are frequently used as a model to study human diseases, and rat urine has been analyzed to search for disease biomarkers. The normal human urinary proteome has been studied extensively, but the normal rat urinary proteome has not been studied in such depth. In light of this, we were prompted to analyze the normal rat urinary proteome using three complementary proteomics platforms: SDS-PAGE separation, followed by LC-ESI-MS/MS; 2DE, followed by MALDI-TOF-TOF and 2D-liquid chromatography-chromatofocusing, followed by LC-ESI-Q-TOF. A total of 366 unique proteins were identified, of which only 5.2% of unique proteins were identified jointly by the three proteomics platforms used. This suggests that simultaneous proteomics techniques provide complementary and nonredundant information. Our analysis affords the most extensive rat urinary protein database currently available and this may be useful in the study of renal physiology and in the search for biomarkers related to renal and nonrenal diseases.


Assuntos
Biomarcadores/urina , Proteinúria/urina , Proteoma/análise , Proteômica/métodos , Animais , Biomarcadores/química , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional/métodos , Feminino , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/classificação , Proteoma/química , Ratos , Ratos Wistar
10.
Probiotics Antimicrob Proteins ; 15(1): 82-106, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022998

RESUMO

This study aimed to isolate lactic acid bacteria (LAB) from the digestive tract, meat and slime of edible snails (Helix lucorum, Helix aspersa and Eobania vermiculata) and investigate their antagonistic activity against Penicillium expansum. They were then characterized for their probiotic potential. Among 900 bacterial isolates, 47 LAB exhibiting anti-P. expansum activity were identified through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as Levilactobacillus brevis (25), Lactococcus lactis (3), Enterococcus faecium (12), Enterococcus faecalis (4), Enterococcus casseliflavus (1), and Enterococcus mundtii (2). Sixty-two percent of the strains were tolerant to 100 mg/L of lysozyme. Seventy two percent of the isolates were able to survive at pH 3 and most of them tolerate 2.5% bile salt concentration. Moreover, 23% of the strains displayed bile salt hydrolase activity. Interestingly, all strains were biofilm strong producers. However, their auto- and co-aggregation properties were time and pH dependent with high aggregative potentiality at pH 4.5 after 24 h. Remarkably, 48.94% of the strains showed high affinity to chloroform. The safety assessment revealed that the 47 LAB had no hemolytic activity and 64% of them lacked mucin degradation activity. All isolated strains were susceptible to gentamycin, streptomycin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Overall, 43 LAB strains showed inhibitory activity against a broad spectrum of pathogenic Gram-positive and gram-negative bacteria, fungi, and yeast. Our findings suggest that L. brevis (EVM12 and EVM14) and Ent. faecium HAS34 strains could be potential candidates for probiotics with interesting antibacterial and anti-P. expansum activities.


Assuntos
Lactobacillales , Probióticos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Probióticos/farmacologia
11.
Syst Appl Microbiol ; 46(5): 126454, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37703769

RESUMO

Cajanus cajan L. (guandul) is commonly cultivated in Dominican Republic where this legume is a subsistence crop. Here we identified through MALDI-TOF MS several rhizobial strains nodulating C. cajan in two Dominican locations as Bradyrhizobium yuanmingense. The phylogenetic analysis of recA and glnII housekeeping genes showed that these strains belong to a wide cluster together with the type strain of B. yuanmingense and other C. cajan nodulating strains previously isolated in Dominican Republic. The comparison of genomes from strains representative of different lineages within this cluster support the existence of several genospecies within B. yuanmingense, which is the major microsymbiont of C. cajan in Dominican Republic where it is also nodulated by Bradyrhizobium cajani and Bradyrhizobium pachyrhizi. The analysis of the symbiotic nodC gene showed that the C. cajan nodulating strains from the B. yuanmingense complex belong to two clusters with less than 90% similarity between them. The strains from these two clusters showed nodC gene similarity values lower than 90% with respect to the remaining Bradyrhizobium symbiovars and then they correspond to two new symbiovars for which we propose the names americaense and caribense. The results of the nodC gene analysis also showed that C. cajan is nodulated by the symbiovar tropici, which has been found by first time in this work within the species Bradyrhizobium pachyrhizi. These results confirmed the high promiscuity degree of C. cajan, which is also nodulated by the symbiovar cajani of Bradyrhizobium cajani in Dominican Republic.


Assuntos
Bradyrhizobium , Cajanus , Fabaceae , Cajanus/genética , República Dominicana , Nódulos Radiculares de Plantas , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Simbiose/genética , DNA Bacteriano/genética
12.
Electrophoresis ; 33(9-10): 1385-96, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22648805

RESUMO

Ras small GTPases function as transducers of extracellular signals regulating cell survival, growth and differentiation. There are three major ras isoforms: H-, N- and K-Ras. To improve the understanding of H- and N-Ras protein signalling networks, we compared total proteome changes in mouse embryonic fibroblasts knock out for H-ras and/or N-ras, using proteomics tools combining 2DE, semi-quantitative image analysis, in-gel trypsin digestion and mass spectrometry. There are four up-regulated proteins due to the loss of expression of H-Ras (including cyclin-dependent kinase inhibitor 2A) and eight down-regulated (including stress-70 protein, dihydropyrimidinase-related-protein 3, heat shock cognate 71 kDa protein, tropomyosin beta chain, Rho GDP-dissociation inhibitor 1) and six up-regulated proteins (e.g. leukocyte elastase inhibitor A, L-lactate dehydrogenase B chain, c-Myc-responsive protein Rcl, interleukin-1 receptor antagonist protein) due to the loss of expression of both N- and H-Ras. Most of these proteins are related to Ras signalling in one way or another. Changes in expression of some of these proteins were further confirmed by Western blot. This proteomic comparative analysis from loss of function of H- and N-Ras knockout fibroblasts yields interpretable data to elucidate the differential protein expression, and contributes to evaluate the possibilities for physiological and therapeutic targets.


Assuntos
Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteoma/análise , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Transformada , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/genética , Eletroforese em Gel Bidimensional/métodos , Fibroblastos , Genótipo , Inibidores de Dissociação do Nucleotídeo Guanina/biossíntese , Inibidores de Dissociação do Nucleotídeo Guanina/genética , L-Lactato Desidrogenase/biossíntese , L-Lactato Desidrogenase/genética , Camundongos , Proteoma/genética , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
13.
Enferm Infecc Microbiol Clin ; 30(10): 597-601, 2012 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-22521278

RESUMO

AIM OF THE STUDY: MALDI-TOF mass spectrometry (MS) is becoming a major resource in the Clinical Microbiology laboratory. Results on some groups of microorganisms are still controversial. We have studied the reliability of MALDI-TOF MS for the identification of anaerobic clinical isolates was studied compared to conventional biochemical methods, with rRNA 16S sequencing being used as a reference when discrepancies arose. MATERIAL AND METHODS: A total of 126 anaerobic bacteria clinical isolates were studied by using API20A kits (bioMérieux, Marcy l'Étoile, France) and MALDI-TOF MS (Autoflex II, Bruker Daltonics, Germany), and using the data library BioTyper 2.0 (Bruker Daltonics, Germany). When discrepancies arose, or MALDI-TOF MS was not able to identify any microorganism, rRNA 16S sequencing was used as the reference standard. RESULTS: The biochemical method and MALDI-TOF MS agreed in identifying 60.9% of isolates at species level, and 20.3% of isolates at genus level. Among the 48 discrepancies observed, rRNA 16S sequencing supported MALDI-TOF MS identification, at species level, in 32 isolates (66.7%), and in 8 isolates (16.7%) at genus level. rRNA 16S sequencing supported biochemical identification in only two isolates (4.2%) at species level, and in 26 isolates (54.2%) at genus level. The eight isolates for which MALDI-TOF MS did not manage to identify, or the identification obtained was rejected by sequencing, belonged to species that are still not added to the BioTyper II data library. CONCLUSIONS: Results obtained in this study show that, overall, MALDI-TOF MS identification of anaerobic bacteria is more reliable than identification obtained by conventional biochemical methods (24% more correct identifications at species level). The number of major errors (incorrect identification at the genus level) is also 2.5-times lower. Moreover, all the major errors obtained by MALDI-TOF MS were due to the absence of some species in the data library. Thus, when data libraries are more complete, reliability differences between both methods will probably be even higher.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Bactérias Anaeróbias/classificação , Infecções Bacterianas/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Humanos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Ribotipagem , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
14.
Enferm Infecc Microbiol Clin ; 30(7): 383-93, 2012 Aug.
Artigo em Espanhol | MEDLINE | ID: mdl-22285825

RESUMO

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is rapidly becoming a new routine resource in Clinical Microbiology laboratories. Its usefulness for bacterial identification is now generally accepted, although there is still some reluctance as regards specific bacterial groups and some other microorganisms, such as moulds. There are other potential applications of this technology in Clinical Microbiology, which are beginning to be developed. A review is presented on the current data on the identification of microorganisms, including the most problematic groups, such as mycobacteria, anaerobic bacteria and moulds. We also analyse its applications for direct sample identification, its impact on pathogenic characteristics of microorganisms, and its potential epidemiological applications. Finally, we review the studies published on its applications for determining antimicrobial susceptibility, and its applications on amplicons, instead of microorganism protein extracts.


Assuntos
Técnicas Microbiológicas/métodos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sangue/microbiologia , Técnicas de Laboratório Clínico , Humanos
15.
Front Pharmacol ; 13: 843732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770075

RESUMO

Renal tubulo-interstitial fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) in the tubular interstitium during chronic kidney disease. The main source of ECM proteins are emerging and proliferating myofibroblasts. The sources of myofibroblasts in the renal tubular interstitium have been studied during decades, in which the epithelial contribution of the myofibroblast population through the epithelial-to-mesenchymal (EMT) process was assumed to be the major mechanism. However, it is now accepted that the EMT contribution is very limited and other mechanisms such as the proliferation of local resident fibroblasts or the transdifferentiation of endothelial cells seem to be more relevant. Activin receptor-like kinase 1 (ALK1) is a type I receptor which belongs to the transforming growth factor beta (TGF-ß) superfamily, with a key role in tissue fibrosis and production of ECM by myofibroblast. Predominantly expressed in endothelial cells, ALK1 also plays an important role in angiogenesis and vessel maturation, but the relation of these processes with kidney fibrosis is not fully understood. We show that after 3 days of unilateral ureteral obstruction (UUO), ALK1 heterozygous mice (Alk1 +/- ) display lower levels of kidney fibrosis associated to a lower number of myofibroblasts. Moreover, Alk1 +/- mice have a lower degree of vascular rarefaction, showing improved peritubular microvasculature after UUO. All these data suggest an important role of ALK1 in regulating vascular rarefaction and emergence of myofibroblasts.

16.
Microorganisms ; 10(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363783

RESUMO

Vaccinium myrtillus is a dwarf shrub of the Ericaceae family with a Palearctic distribution, associated with temperate and cold humid climates. It is widespread on the European continent; on the Iberian Peninsula it is located on Atlantic climate mountains and glacial relicts. In Portugal, we find scattered and interesting populations; however, the majority of them are threatened by climate change and wildfires. Given that, the objective of this study is to determine the rhizospheric and root bacterial communities of this plant in the southernmost regions, and, consequently, its potential range and ability to be used as a biofertilizer. In this work, metabarcoding of 16S rRNA gene showed that the endophytic bacterial diversity is dependent on the plant and selected by it according to the observed alpha and beta diversity. Moreover, a culturomic approach allowed 142 different strains to be isolated, some of them being putative new species. Additionally, some strains belonging to the genera Bacillus, Paenibacillus, Pseudomonas, Paraburkholderia, and Caballeronia showed significant potential to be applied as multifunctional biofertilizers since they present good plant growth-promoting (PGP) mechanisms, high colonization capacities, and an increase in vegetative parameters in blueberry and tomato plants.

17.
Microorganisms ; 10(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422371

RESUMO

Arthropod vectors and parasites are identified morphologically or, more recently, by molecular methods. Both methods are time consuming and require expertise and, in the case of molecular methods, specific devices. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of bacteria has meant a major change in clinical microbiology laboratories because of its simplicity, speed and specificity, and its capacity to identify microorganisms, in some cases, directly from the sample (urine cultures, blood cultures). Recently, MALDI-TOF MS has been shown as useful for the identification of some parasites. On the other hand, the identification of vector arthropods and the control of their populations is essential for the control of diseases transmitted by arthropods, and in this aspect, it is crucial to have fast, simple and reliable methods for their identification. Ticks are blood-sucking arthropods with a worldwide distribution, that behave as efficient vectors of a wide group of human and animal pathogens, including bacteria, protozoa, viruses, and even helminths. They are capable of parasitizing numerous species of mammals, birds and reptiles. They constitute the second group of vectors of human diseases, after mosquitoes. MALDI-TOF MS has been shown as useful for the identification of different tick species, such as Ixodes, Rhipicephalus and Amblyomma. Some studies even suggest the possibility of being able to determine, through MALDI-TOF MS, if the arthropod is a carrier of certain microorganisms. Regarding mosquitoes, the main group of vector arthropods, the possibility of using MALDI-TOF MS for the identification of different species of Aedes and Anopheles has also been demonstrated. In this review, we address the possibilities of this technology for the identification of parasites and arthropod vectors, its characteristics, advantages and possible limitations.

18.
J Clin Microbiol ; 48(6): 2110-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20392910

RESUMO

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been suggested as a reliable method for bacterial identification from cultures. Direct analysis of clinical samples might increase the usefulness of this method, shortening the time for microorganism identification. We compared conventional methods for the diagnosis of urinary tract infections (UTIs) and identification of the urinary tract pathogens (automated screening, plate cultures, and identification based on biochemical characteristics) and a fast method based on conventional screening and MALDI-TOF MS. For this latter method, 4 ml of urine was centrifuged at a low-revolution setting (2,000 x g) to remove leukocytes and then at high revolutions (15,500 x g) to collect bacteria. The pellet was washed and then applied directly to the MALDI-TOF MS plate. Two hundred sixty urine samples, detected as positive by the screening device (UF-1000i), were processed by culture and MALDI-TOF MS. Twenty samples were positive in the screening device but negative in culture, and all of them were also negative by MALDI-TOF MS. Two-hundred thirty-five samples displayed significant growth of a single morphological type in culture. Two-hundred twenty of them showed bacterial growth of >10(5) CFU/ml. Microorganism identifications in this group were coincident at the species level in 202 cases (91.8%) and at the genus level in 204 cases (92.7%). The most frequent microorganism was Escherichia coli (173 isolates). MALDI-TOF MS identified this microorganism directly from the urine sample in 163 cases (94.2%). Our results show that MALDI-TOF MS allows bacterial identification directly from infected urine in a short time, with high accuracy, and especially when Gram-negative bacteria with high bacterial counts are involved.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Infecções Urinárias/diagnóstico , Urina/microbiologia , Bactérias/química , Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Humanos , Sensibilidade e Especificidade , Infecções Urinárias/microbiologia
19.
Enferm Infecc Microbiol Clin ; 28(8): 492-7, 2010 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-20409613

RESUMO

INTRODUCTION: The methods routinely used for bacterial identification in Clinical Microbiology Laboratory, although miniaturized and automated, are still based on the same basic principles as classical identification methods. Nevertheless, technological advances are emerging which could modify these routine methods. We report a comparative study between conventional identification methods and mass spectrometry MALDI-TOF (MS MALDI-TOF) for bacterial identification in the Clinical Microbiology Laboratory. METHODS: We analysed 294 facultative anaerobic and aerobic isolates (65 Gram positives and 229 Gram negatives), obtained from different clinical samples, using conventional microbiological methods (Wider, Fco. Soria Melguizo, Madrid, Spain; Vitek-2, APIStaph, API 20 Strep, API Coryne and API NH, bioMérieux, Marcy L'Etoile, France) and an Autoflex III MS with a MALDI-TOF device (Bruker Daltonics GmbH, Leipzig, Germany). Salmonella isolates were also typed by using specific sera. Isolates identified with a confidence rate <95% were checked by using API systems. Isolates which were not accurately identified by API systems were rejected. MS MALDI-TOF identification is automatically scored by the system software between 1 and 3 points. Isolates with scores <1.5 were classified as unreliable. Correlation between both identifications was classified as correlation at the species level, at the genus level or no correlation. RESULTS: Correlation at the species level in Gram positives was 100%. Correlation in Gram negatives was 87.7% at the species level and 97.7% at the genus level. There was no correlation in 2.2% of Gram negatives studied. Identification failures occurred in the genera Raoultella and Acinetobacter, in Stenotrophomonas maltophilia and in Francisella tularensis. CONCLUSION: Bacterial clinical isolates identification obtained by MS MALDI-TOF shows excellent correlation with identification obtained by conventional microbiological methods. Moreover, MS MALDI-TOF allows the identification of bacteria from colonies grown on agar culture plates in just a few minutes, with a very simple methodology and hardly any consumable costs, although the financial costs of purchasing the device can be high.


Assuntos
Bactérias/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas Bacteriológicas/métodos , Técnicas de Laboratório Clínico/métodos , Humanos
20.
Microorganisms ; 8(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098253

RESUMO

Several artisanal cheeses are elaborated in European countries, being commonly curdled with rennets of animal origin. However, in some Spanish regions some cheeses of type "Torta" are elaborated using Cynara cardunculus L. rennets. Two of these cheeses, "Torta del Casar" and "Torta de Trujillo", are elaborated in Cáceres province with ewe's raw milk and matured over at least 60 days without starters. In this work, we identified the lactic acid bacteria present in these cheeses using MALDI-TOF MS and pheS gene analyses, which showed they belong to the species Lactobacillus curvatus, Lactobacillus diolivorans, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis and Leuconostoc mesenteroides. The pheS gene analysis also allowed the identification of the subspecies La. plantarum subsp. plantarum, La. paracasei subsp. paracasei and Le. mesenteroides subsp. jonggajibkimchii. Low similarity values were found in this gene for some currently accepted subspecies of Lc. lactis and for the two subspecies of La. plantarum, and values near to 100% for the subspecies of Le. mesenteroides and La. paracasei. These results, which were confirmed by the calculated ANIb and dDDH values of their whole genomes, showed the need to revise the taxonomic status of these species and their subspecies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA