Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Biol Med Model ; 16(1): 4, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30803437

RESUMO

BACKGROUND: The application of effective vaccines against pig cysticercosis and mass chemotherapy against pig cysticercosis and human taeniasis have shown the feasibility of interrupting the parasite's life cycle in endemic areas. METHODS: A mathematical model that divides the population into susceptible, infected, and vaccinated individuals is formulated. The model is based upon the life cycle of the parasite. Computer numerical simulation experiments to evaluate the impact of pig vaccination under different vaccination schedules, and combined intervention strategies including pig vaccination and anthelmintic treatment against human taeniasis are carried out. RESULTS: Vaccination against either pig cysticercosis or against human taeniasis will influence the transmission dynamics not only among vaccinees but also the dynamics of the other hosts as well. When the protective efficacy and/or the coverage rate is less than 100%, different mass interventions like vaccinating the pig population twice in combination with chemotherapeutic treatment against human taeniasis, the elimination of the infection in both pigs and humans can also be achieved. CONCLUSIONS: Our mathematical model has the potential for planning, and designing effective intervention strategies including both mass vaccination and/or chemotherapeutic treatment to eliminate pig cysticercosis, human taeniasis and human neurocysticercosis. The model can be adapted to any given community with mild, moderate endemicity, or even in hyperendemic regions.


Assuntos
Cisticercose/prevenção & controle , Modelos Teóricos , Teníase/prevenção & controle , Vacinação/métodos , Vacinas/administração & dosagem , Animais , Cisticercose/transmissão , Tratamento Farmacológico/métodos , Humanos , Suínos , Teníase/transmissão
2.
Theor Biol Med Model ; 15(1): 18, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449280

RESUMO

BACKGROUND: Taenia solium is the aetiological agent of human taeniasis, pig cysticercosis and human neurocysticercosis, which are serious public health problems, especially in developing countries. METHODS: A mathematical model of the transmission dynamics of taeniasis-cysticercosis is formulated. The model consists of a coupled system of differential equations, which are density-dependent equations for describing the flow of the parasite through the life cycle. The model is hybrid since it comprises deterministic equations with stochastic elements which describe changes in the mean parasite burden and incorporates the overall pattern of the parasites' distribution. RESULTS: Sensitivity and bifurcation analyses were carried out to determine the range of values of the model. The model can reproduce the observed epidemiological patterns of human taeniasis, pig and human cysticercosis. For example, for a wide range of parameter values, the mean intensity of adult worms tends to rapidly stabilize in one parasite per individual host. From this model, we also derived a Susceptible-Infected model to describe the prevalence of infection in humans and pigs. Chemotherapeutic interventions against pig cysticercosis or human taeniasis may reduce rapidly and effectively the mean intensity of human taeniasis, pig cysticercosis and human cysticercosis. This effect can be achieved even if the protective efficacy of the drug is of the order of 90% and the coverage rate is 90%. This means that health in humans infected either with adult worms or cysticerci may be achieved by the application of anthelmintic drugs against pig cysticercosis. However, treatment against human cysticercosis alone, does not influence neither human teniasis nor pig cysticercosis. This is because human cysticercosis infection does not influence the value of the basic reproductive number (Ro). CONCLUSIONS: Even coverage of 100% in the administration of anthelmintics did not eliminate the infection. Then elimination of the infection in all hosts does not seem a feasible goal to achieve by administering only chemotherapeutic interventions. Throughout the manuscript a discussion of our model in the context of other models of taeniasis-cysticercosis is presented.


Assuntos
Anti-Helmínticos/uso terapêutico , Cisticercose/tratamento farmacológico , Cisticercose/transmissão , Modelos Teóricos , Taenia solium/efeitos dos fármacos , Animais , Anti-Helmínticos/farmacologia , Cisticercose/fisiopatologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/fisiologia , Suínos , Taenia solium/isolamento & purificação , Taenia solium/fisiologia , Teníase/tratamento farmacológico , Teníase/fisiopatologia , Teníase/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA