Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 36(7): 1282-1296, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652100

RESUMO

The predictability of a stimulus can be characterized by its transitional probability. Perceptual expectations derived from the transitional probability of the stimulus were found to modulate the early alpha oscillations in the sensory regions of the brain when neural responses to expected versus unexpected stimuli were compared. The objective of our study was to find out the extent to which this low-frequency oscillation reflects stimulus predictability. We aimed to detect the alpha-power difference with smaller differences in transitional probabilities by comparing expected stimuli with neutral ones. We studied the effect of expectation on perception by applying an unsupervised visual statistical learning paradigm with expected and neutral stimuli embedded in an image sequence while recording EEG. Time-frequency analysis showed that expected stimuli elicit lower alpha power in the window of 8-12 Hz and 0-400 msec after stimulus presentation, appearing in the centroparietal region. Comparing previous findings of expectancy-based alpha-band modulation with our results suggests that early alpha oscillation shows an inverse relationship with stimulus predictability. Although current data are insufficient to determine the origin of the alpha power reduction, this could be a potential sign of expectation suppression in cortical oscillatory activity.


Assuntos
Ritmo alfa , Humanos , Masculino , Feminino , Ritmo alfa/fisiologia , Adulto Jovem , Adulto , Eletroencefalografia , Percepção Visual/fisiologia , Estimulação Luminosa , Encéfalo/fisiologia , Mapeamento Encefálico
2.
Psychophysiology ; 61(8): e14575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38549442

RESUMO

The human brain can detect statistical regularities in the environment across a wide variety of contexts. The importance of this process is well-established not just in language acquisition but across different modalities; in addition, several neural correlates of statistical learning have been identified. A current technique for tracking the emergence of regularity learning and localizing its neural background is frequency tagging (FT). FT can detect neural entrainment not only to the frequency of stimulus presentation but also to that of a hidden structure. Auditory learning paradigms with linguistic and nonlinguistic stimuli, along with a visual paradigm using nonlinguistic stimuli, have already been tested with FT. To complete the picture, we conducted an FT experiment using written syllables as stimuli and a hidden triplet structure. Both behavioral and neural entrainment data showed evidence of structure learning. In addition, we localized two electrode clusters related to the process, which spread across the frontal and parieto-occipital areas, similar to previous findings. Accordingly, we conclude that fast-paced visual linguistic regularities can be acquired and are traceable through neural entrainment. In comparison with the literature, our findings support the view that statistical learning involves a domain-general network.


Assuntos
Eletroencefalografia , Aprendizagem , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Aprendizagem/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Linguística , Percepção Visual/fisiologia
3.
Mem Cognit ; 50(7): 1530-1545, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35377057

RESUMO

The ability to grasp relevant patterns from a continuous stream of environmental information is called statistical learning. Although the representations that emerge during visual statistical learning (VSL) are well characterized, little is known about how they are formed. We developed a sensitive behavioral design to characterize the VSL trajectory during ongoing task performance. In sequential categorization tasks, we assessed two previously identified VSL markers: priming of the second predictable image in a pair manifested by a reduced reaction time (RT) and greater accuracy, and the anticipatory effect on the first image revealed by a longer RT. First, in Experiment 1A, we used an adapted paradigm and replicated these VSL markers; however, they appeared to be confounded by motor learning. Next, in Experiment 1B, we confirmed the confounding influence of motor learning. To assess VSL without motor learning, in Experiment 2 we (1) simplified the categorization task, (2) raised the number of subjects and image repetitions, and (3) increased the number of single unpaired images. Using linear mixed-effect modeling and estimated marginal means of linear trends, we found that the RT curves differed significantly between predictable paired and control single images. Further, the VSL curve fitted a logarithmic model, suggesting a rapid learning process. These results suggest that our paradigm in Experiment 2 seems to be a viable online tool to monitor the behavioral correlates of unsupervised implicit VSL.


Assuntos
Aprendizagem Espacial , Análise e Desempenho de Tarefas , Humanos , Tempo de Reação
4.
Front Behav Neurosci ; 17: 1285773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025386

RESUMO

Statistical learning is assumed to be a fundamentally general sensory process across modalities, age, other cognitive functions, and even species. Despite this general role, behavioral testing on regularity acquisition shows great variance among individuals. The current study aimed to find neural correlates of visual statistical learning showing a correlation with behavioral results. Based on a pilot study, we conducted an EEG study where participants were exposed to associated stimulus pairs; the acquisition was tested through a familiarity test. We identified an oscillation in the gamma range (40-70 Hz, 0.5-0.75 s post-stimulus), which showed a positive correlation with the behavioral results. This change in activity was located in a left frontoparietal cluster. Based on its latency and location, this difference was identified as a late gamma activity, a correlate of model-based learning. Such learning is a summary of several top-down mechanisms that modulate the recollection of statistical relationships such as the capacity of working memory or attention. These results suggest that, during acquisition, individual behavioral variance is influenced by dominant learning processes which affect the recall of previously gained information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA