Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(45): e2206333119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322769

RESUMO

Combined vaccine formulations targeting not only hemagglutinin but also other influenza virus antigens could form the basis for a universal influenza virus vaccine that has the potential to elicit long-lasting, broadly cross-reactive immune responses. Lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) vaccines can be utilized to efficiently target multiple antigens with a single vaccine. Here, we assessed the immunogenicity and protective efficacy of nucleoside-modified mRNA-LNP vaccines that contain four influenza A group 2 virus antigens (hemagglutinin stalk, neuraminidase, matrix protein 2, and nucleoprotein) in mice. We found that all vaccine components induced antigen-specific cellular and humoral immune responses after administration of a single dose. While the monovalent formulations were not exclusively protective, the combined quadrivalent formulation protected mice from all challenge viruses, including a relevant H1N1 influenza virus group 1 strain, with minimal weight loss. Importantly, the combined vaccine protected from morbidity at a dose of 125 ng per antigen after a single vaccination in mice. With these findings, we confidently conclude that the nucleoside-modified mRNA-LNP platform can be used to elicit protection against a large panel of influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Nucleosídeos , Hemaglutininas , Vacinas Combinadas , RNA Mensageiro/genética , Anticorpos Antivirais , Vacinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas de mRNA
2.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809760

RESUMO

Investigation of the methanol extract of the poroid fungus Fuscoporia torulosa resulted in the isolation of a novel triterpene, fuscoporic acid (1), together with inoscavin A and its previously undescribed Z isomer (2 and 3), 3,4-dihydroxy-benzaldehide (4), osmundacetone (5), senexdiolic acid (6), natalic acid (7), and ergosta-7,22-diene-3-one (8). The structures of fungal compounds were determined on the basis of NMR and MS spectroscopic analyses, as well as molecular modeling studies. Compounds 1, 6-8 were examined for their antibacterial properties on resistant clinical isolates, and cytotoxic activity on human colon adenocarcinoma cell lines. Compound 8 was effective against Colo 205 (IC50 11.65 ± 1.67 µM), Colo 320 (IC50 8.43 ± 1.1 µM) and MRC-5 (IC50 7.92 ± 1.42 µM) cell lines. Potentially synergistic relationship was investigated between 8 and doxorubicin, which revealed a synergism between the examined compounds with a combination index (CI) at the 50% growth inhibition dose (ED50) of 0.521 ± 0.15. Several compounds (1 and 6-8) were tested for P-glycoprotein modulatory effect in Colo 320 resistant cancer cells, but none of the compounds proved to be effective in this assay. Fungal metabolites 2-5 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) and DPPH assays. Compounds 4 and 5 were found to have a considerable antioxidant effect with EC50 0.25 ± 0.01 (DPPH) and 12.20 ± 0.92 mmol TE/g (ORAC). The current article provides valuable information on both the chemical and pharmacological profiles of Fuscoporia torulosa, paving the way for future studies with this species.


Assuntos
Basidiomycota/química , Fenóis/química , Fenóis/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/fisiologia , Linhagem Celular Tumoral , Humanos , Metanol/química
3.
Molecules ; 25(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204362

RESUMO

The detailed chemical analysis of the methanol extract of Meripilus giganteus (Pers.) P. Karst. led to the isolation of two new cerebrosides, mericeramides A (1) and B (2) together with cerebroside B (3), ergosterol (4), 3ß-hydroxyergosta-7,22-diene (5), cerevisterol (6), 3ß-hydroxyergosta-6,8(14),22-triene (7), 3ß-O-glucopyranosyl-5,8-epidioxyergosta-6,22-diene (8) and (11E,13E)-9,10-dihydroxy-11,13-octadecadienoic acid (9). The structures of the compounds were determined on the basis of NMR and MS spectroscopic analysis. Mericeramide A (1) is the first representative of halogenated natural cerebrosides. The isolated fungal metabolites 1-9 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) assay. Compounds 2, 5 and 9 proved to possess considerable antioxidant effects, with 2.50 ± 0.29, 4.94 ± 0.37 and 4.27 ± 0.05 mmol TE/g values, respectively. The result obtained gives a notable addition to the chemical and bioactivity profile of M. giganteus, highlighting the possible contribution of this species to a versatile and balanced diet.


Assuntos
Agaricales/química , Antioxidantes/análise , Cerebrosídeos/análise , Esteroides/análise , Antioxidantes/química , Cerebrosídeos/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Capacidade de Absorbância de Radicais de Oxigênio , Esteroides/química
4.
Molecules ; 24(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650625

RESUMO

Twelve compounds (1⁻12) were isolated from the methanol extract of brick cap mushroom (Hypholoma lateritium (Schaeff.) P. Kumm.). The structures of the compounds were elucidated using extensive spectroscopic analyses, including NMR and MS measurements. Lanosta-7,9(11)-diene-12ß,21α-epoxy-2α,3ß,24ß,25-tetraol (1) and 8-hydroxy-13-oxo-9E,11E-octa-decadienoic acid (2) were identified as new natural products, together with ten known compounds, from which 3ß-hydroxyergosta-7,22-diene (4), demethylincisterol A2 (5), cerevisterol (6), 3ß-O-glucopyranosyl-5,8-epidioxyergosta-6,22-diene (7), fasciculol E (9), and uridine (12) were identified in this species for the first time. The isolated triterpenes (1, 3⁻11) were investigated for their toxicity in vivo using bdelloid rotifer assays. Most of the examined steroids in general showed low toxicity, although the effects of the compounds varied in a wider range from the non-toxic lanosta-7,9(11)-diene-12ß,21α-epoxy-2α,3ß,24ß,25-tetraol (1) to the significantly toxic cerevisterol (6), with substantial dependence in some cases on the presence of nutrient in the experimental environment.


Assuntos
Agaricales/química , Triterpenos/química , Triterpenos/isolamento & purificação , Animais , Fracionamento Químico , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Rotíferos/efeitos dos fármacos , Testes de Toxicidade , Triterpenos/toxicidade
5.
Methods Mol Biol ; 2786: 167-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814394

RESUMO

Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have demonstrated potency in multiple preclinical models against various pathogens and have recently received considerable attention due to the success of the two safe and effective COVID-19 mRNA vaccines developed by Moderna and Pfizer-BioNTech. The use of nucleoside modification in mRNA vaccines seems to be critical to achieve a sufficient level of safety and immunogenicity in humans, as illustrated by the results of clinical trials using either nucleoside-modified or unmodified mRNA-based vaccine platforms. It is well documented that the incorporation of modified nucleosides in the mRNA and stringent mRNA purification after in vitro transcription render it less inflammatory and highly translatable; these two features are likely key for mRNA vaccine safety and potency. Formulation of the mRNA into LNPs is important because LNPs protect mRNA from rapid degradation, enabling efficient delivery and high levels of protein production for extended periods of time. Additionally, recent studies have provided evidence that certain LNPs with ionizable cationic lipids (iLNPs) possess adjuvant activity that fosters the induction of strong humoral and cellular immune responses by mRNA-iLNP vaccines.In this chapter we describe the production of iLNP-encapsulated, nucleoside-modified, and purified mRNA and the evaluation of antigen-specific T cell and antibody responses elicited by this vaccine form.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Nanopartículas , Nucleosídeos , SARS-CoV-2 , Vacinas de mRNA , Nucleosídeos/química , Animais , Nanopartículas/química , Vacinas contra COVID-19/imunologia , Humanos , Camundongos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Lipídeos/química , Lipossomos/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/genética
6.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915627

RESUMO

Lipid nanoparticles (LNPs) have transformed genetic medicine, recently shown by their use in COVID-19 mRNA vaccines. While loading LNPs with mRNA has many uses, loading DNA would provide additional advantages such as long-term expression and availability of promoter sequences. However, here we show that plasmid DNA (pDNA) delivery via LNPs (pDNA-LNPs) induces acute inflammation in naïve mice which we find is primarily driven by the cGAS-STING pathway. Inspired by DNA viruses that inhibit this pathway for replication, we co-loaded endogenous lipids that inhibit STING into pDNA-LNPs. Specifically, loading nitro-oleic acid (NOA) into pDNA-LNPs (NOA-pDNA-LNPs) ameliorates serious inflammatory responses in vivo enabling prolonged transgene expression (at least 1 month). Additionally, we demonstrate the ability to iteratively optimize NOA-pDNA-LNPs' expression by performing a small LNP formulation screen, driving up expression 50-fold in vitro. Thus, NOA-pDNA-LNPs, and pDNA-LNPs co-loaded with other bioactive molecules, will provide a major new tool in the genetic medicine toolbox, leveraging the power of DNA's long-term and promoter-controlled expression.

7.
Int J Med Mushrooms ; 22(2): 125-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479001

RESUMO

The chemical analysis of the methanol extract of Porodaedalea chrysoloma (Fr.) Fiasson & Niemela afforded the isolation of five compounds (1-5). The first two are phenolic derivatives: methyl (E)-3-(4-methoxycar-bonylphenoxy)-acrylate (1) is a new natural product, while methyl 3-(4-methoxycarbonylphenoxy)-propionate (2) was isolated from a natural source for the first time. The triterpene steroids ergone (3), 3ß-hydroxyergosta-7,22-diene (4), and ergosterol (5) have not been previously identified in this species. The structures of the compounds were determined on the basis of NMR and MS spectroscopic analysis. The isolated fungal metabolites 1-5 were evaluated for their antioxidant activity. Compounds 1, 2, and 4 proved to possess considerable antioxidant effect in the ORAC assay with 2.21 ± 0.34, 1.58 ± 0.18, and 5.02 ± 0.47 mmol TE/g, respectively.


Assuntos
Antioxidantes/química , Basidiomycota/química , Carpóforos/química , Fenóis/química , Esteroides/química , Triterpenos/química , Agaricales , Antioxidantes/isolamento & purificação , Colestenonas/química , Colestenonas/isolamento & purificação , Ergosterol/química , Ergosterol/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Capacidade de Absorbância de Radicais de Oxigênio , Fenóis/isolamento & purificação , Esteroides/isolamento & purificação , Triterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA