Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
APMIS ; 130(1): 11-20, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741788

RESUMO

The Ki-67 proliferation index (PI) is a prognostic factor in neuroendocrine tumors (NETs) and defines tumor grade. Analysis of Ki-67 PI requires calculation of Ki-67-positive and Ki-67-negative tumor cells, which is highly subjective. To overcome this, we developed a deep learning-based Ki-67 PI algorithm (KAI) that objectively calculates Ki-67 PI. Our study material consisted of NETs divided into training (n = 39), testing (n = 124), and validation (n = 60) series. All slides were digitized and processed in the Aiforia® Create (Aiforia Technologies, Helsinki, Finland) platform. The ICC between the pathologists and the KAI was 0.89. In 46% of the tumors, the Ki-67 PIs calculated by the pathologists and the KAI were the same. In 12% of the tumors, the Ki-67 PI calculated by the KAI was 1% lower and in 42% of the tumors on average 3% higher. The DL-based Ki-67 PI algorithm yields results similar to human observers. While the algorithm cannot replace the pathologist, it can assist in the laborious Ki-67 PI assessment of NETs. In the future, this approach could be useful in, for example, multi-center clinical trials where objective estimation of Ki-67 PI is crucial.


Assuntos
Biomarcadores Tumorais , Processamento de Imagem Assistida por Computador/métodos , Antígeno Ki-67/metabolismo , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/metabolismo , Patologia Clínica/métodos , Algoritmos , Automação , Proliferação de Células , Aprendizado Profundo , Testes Diagnósticos de Rotina/métodos , Finlândia , Humanos , Tumores Neuroendócrinos/classificação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA