Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 75(22): 7221-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19801478

RESUMO

Recent studies highlight the diversity and significance of marine phototrophic microorganisms such as picocyanobacteria, phototrophic picoeukaryotes, and bacteriochlorophyll- and rhodopsin-holding phototrophic bacteria. To assess if freshwater ecosystems also harbor similar phototroph diversity, genes involved in the biosynthesis of bacteriochlorophyll and chlorophyll were targeted to explore oxygenic and aerobic anoxygenic phototroph composition in a wide range of lakes. Partial dark-operative protochlorophyllide oxidoreductase (DPOR) and chlorophyllide oxidoreductase (COR) genes in bacteria of seven lakes with contrasting trophic statuses were PCR amplified, cloned, and sequenced. Out of 61 sequences encoding the L subunit of DPOR (L-DPOR), 22 clustered with aerobic anoxygenic photosynthetic bacteria, whereas 39 L-DPOR sequences related to oxygenic phototrophs, like cyanobacteria, were observed. Phylogenetic analysis revealed clear separation of these freshwater L-DPOR genes as well as 11 COR gene sequences from their marine counterparts. Terminal restriction fragment length analysis of L-DPOR genes was used to characterize oxygenic aerobic and anoxygenic photosynthesizing populations in 20 lakes differing in physical and chemical characteristics. Significant differences in L-DPOR community composition were observed between dystrophic lakes and all other systems, where a higher proportion of genes affiliated with aerobic anoxygenic photosynthetic bacteria was observed than in other systems. Our results reveal a significant diversity of phototrophic microorganisms in lakes and suggest niche partitioning of oxygenic and aerobic anoxygenic phototrophs in these systems in response to trophic status and coupled differences in light regime.


Assuntos
Bactérias/genética , Bacterioclorofilas/genética , Clorofila/genética , Água Doce/microbiologia , Genes Bacterianos/genética , Oxirredutases/genética , Aerobiose , Bactérias/classificação , Bactérias/enzimologia , Cianobactérias/enzimologia , Cianobactérias/genética , Água Doce/química , Variação Genética , Substâncias Húmicas/análise , Dados de Sequência Molecular , Processos Fototróficos , Filogenia
2.
FEMS Microbiol Lett ; 366(6)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30883643

RESUMO

This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo
3.
FEMS Microbiol Ecol ; 63(1): 12-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18031540

RESUMO

The influence of biotic and environmental variables on the abundance of virus-like particles (VLP) and lysogeny was investigated by examining 10 Antarctic lakes in the Vestfold Hills, Antarctica, in the Austral Spring. Abundances of viruses and bacteria and bacterial metabolic activity were estimated using SYBR Gold (Molecular Probes), Baclight (Molecular Probes) and 6-carboxy fluorescein diacetate (6CFDA). Total bacterial abundances among the lakes ranged between 0.12 and 0.47 x 10(9) cells L(-1). The proportion of intact bacteria (SYTO 9-stained cells) ranged from 13.5% to 83.5% of the total while active (6CFDA-stained) bacteria ranged from 33% to 116%. Lysogeny, as determined with Mitomycin C, was only detected in one of the lakes surveyed, indicating that viral replication was occurring predominantly via the lytic cycle. Principal component analysis and confirmatory correlation analysis of individual variables showed that high abundances of VLP occurred in lakes of high conductivity with high concentrations of soluble reactive phosphorus and dissolved organic carbon. These lakes supported high concentrations of chlorophyll a, intact bacteria, rates of bacterial production and virus to bacteria ratios. Thus, it was suggested that viral abundance in the Antarctic lakes was determined by the trophic status of the lake and the resultant abundance of intact bacterial hosts.


Assuntos
Bactérias/crescimento & desenvolvimento , Bacteriófagos/crescimento & desenvolvimento , Água Doce/microbiologia , Água Doce/virologia , Regiões Antárticas , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Fluoresceínas/metabolismo , Água Doce/química , Lisogenia , Sondas Moleculares , Compostos Orgânicos/metabolismo , Análise de Componente Principal , Vírion/crescimento & desenvolvimento
4.
ISME J ; 12(11): 2796-2800, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29977008

RESUMO

Microorganisms play a critical role in nitrogen cycling by mineralising dissolved organic nitrogen (DON) compounds into bioavailable inorganic forms (DIN). Although DIN is crucial for seagrass growth, the hypothesis that seagrass leaf associated-microorganisms could convert DON to forms available for plant uptake has never been tested. We conducted a laboratory-based experiment in which seagrass (Posidonia sinuosa) leaves were incubated with 15N-amino acids (aa), with and without associated microorganisms. Samples were collected after 0.5, 2, 6 and 12 h. Both bulk stable isotope and nanoscale secondary ion mass spectrometry (NanoSIMS) analysis showed high accumulation of 15N within seagrass leaf tissues with an associated microbiota, but not in plants devoid of microorganisms. These results significantly change our understanding of the mechanisms of seagrass nitrogen use and provide evidence that seagrass microbiota increase nitrogen availability for uptake by seagrass leaves by mineralising aa, thus enhancing growth and productivity of these important coastal ecosystems.


Assuntos
Alismatales/metabolismo , Alismatales/microbiologia , Nitrogênio/metabolismo , Ecossistema , Microbiota , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
5.
Environ Microbiol Rep ; 8(5): 582-589, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27188411

RESUMO

Coastal vegetated ecosystems play an important role in carbon cycling and bacterial communities inhabiting coastal sediments are responsible for the remineralization and processing of organic carbon (OC). We collected 1 m-long sediment cores in Posidonia seagrass meadows from coastal and estuarine sites in Australia that differed in their sedimentary organic and inorganic carbon, nitrogen and mud contents. The metabolic diversity of sediment heterotrophic bacterial communities was characterized at different sediment depths, based on the utilization pattern of 31 individual carbon substrates using Biolog EcoPlatesTM . High metabolic diversity was recorded at both sites, but the carbon substrate utilization rates and the use of carbohydrates were higher at the coastal site compared to the estuarine site. The heterotrophic bacterial community in the coastal sediment appeared to metabolize a more diverse OC pool compared to the estuarine site, which might partly explain the differences in OC storage among the seagrass habitats studied. The Biolog EcoPlatesTM provided a useful tool for characterising the sediment heterotrophic bacterial communities in the meadows and sediment characteristics and biochemical composition of the organic matter played an important role in shaping heterotrophic bacterial communities and their carbon utilization rates, potentially affecting carbon accumulation and preservation within seagrass sediments.

6.
Ecol Evol ; 6(18): 6662-6671, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27777738

RESUMO

The transfer of organic material from one coastal environment to another can increase production in recipient habitats in a process known as spatial subsidy. Microorganisms drive the generation, transformation, and uptake of organic material in shallow coastal environments, but their significance in connecting coastal habitats through spatial subsidies has received limited attention. We address this by presenting a conceptual model of coastal connectivity that focuses on the flow of microbially mediated organic material in key coastal habitats. Our model suggests that it is not the difference in generation rates of organic material between coastal habitats but the amount of organic material assimilated into microbial biomass and respiration that determines the amount of material that can be exported from one coastal environment to another. Further, the flow of organic material across coastal habitats is sensitive to environmental change as this can alter microbial remineralization and respiration rates. Our model highlights microorganisms as an integral part of coastal connectivity and emphasizes the importance of including a microbial perspective in coastal connectivity studies.

7.
Environ Microbiol Rep ; 4(1): 72-81, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23757232

RESUMO

Viral and prokaryotic interactions in freshwaters have been investigated worldwide but there are few temporal studies in the tropics and none in the sub-tropics. In this 10-month study, we examined temporal changes in virus-host interactions and viral life cycles (lytic versus lysogenic) in relation to the prevailing environmental conditions in a subtropical water reservoir (Wivenhoe) in southeast Queensland, Australia. Heterotrophic prokaryotes and picocyanobacteria were positively correlated with concentrations of viruses throughout the study, indicating the presence of both bacteriophages and cyanophages in the reservoir. The percentage of heterotrophic prokaryotes and picocyanobacteria containing intracellular viruses (FVIC) ranged between 0.2% and 2.4% and did not vary significantly over the 10-month study, whereas lysogenic heterotrophic prokaryotes were only detected in the drier months of June and July. Spearman rank correlation analysis showed that the oxidative-reduction potential (ORP) of the water reservoir influenced the concentrations of viruses, heterotrophic prokaryotes and picocyanobacteria significantly, with low ORP offering a favourable environment for these components. There was a negative relationship between FVIC and rainfall suggesting the associated run-off altered virus-host interactions. Overall, our study provides novel information and inferences on how virus-host interactions in subtropical freshwaters might respond to changes in precipitation predicted to occur with global climate change.

8.
PLoS One ; 7(5): e36580, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586479

RESUMO

The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2-8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species.


Assuntos
Cadeia Alimentar , Larva/fisiologia , Palinuridae/fisiologia , Animais , Austrália , Metabolismo Energético , Ácidos Graxos/metabolismo , Oceano Índico , Comportamento Predatório/fisiologia , Austrália Ocidental
9.
FEMS Microbiol Ecol ; 70(3): 471-82, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19732143

RESUMO

Virus-bacterium interactions were investigated in the pelagic and benthic habitats in a set of lakes along an altitudinal gradient in the subarctic northern Sweden. Viral and bacterial abundances showed a significant variation between the lakes, with the highest benthic microbial abundances recorded in a high-altitude lake [993 m above sea level (a.s.l.)], whereas the highest pelagic microbial abundances were found in a low-altitude lake (270 m a.s.l.). In the pelagic habitat, there was also a distinct difference in microbial abundances between the summer-autumn and the winter sampling occasion. A positive relationship was noted between viruses and bacteria in both the pelagic and the benthic habitats. Visibly virus-infected bacterial cells were uncommon in the pelagic habitat and undetectable in the benthos. Both lytic and lysogenic pelagic viral production rates were undetectable or low; thus, a possible explanation for the relative high viral abundances found in the water column could be an allochthonous input of viruses or release of sediment-derived viruses. Overall, our results provide novel information about the relevance of viruses in the subarctic region and indicate that viruses play only a minor role in the nutrient and carbon cycling in the microbial communities of subarctic lakes.


Assuntos
Bactérias/isolamento & purificação , Bacteriófagos/isolamento & purificação , Água Doce/microbiologia , Água Doce/virologia , Microbiologia da Água , Bactérias/virologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/virologia , Estações do Ano , Suécia , Temperatura , Água/química
10.
Extremophiles ; 12(2): 167-75, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18188502

RESUMO

Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.


Assuntos
Bacteriófagos/fisiologia , Ecossistema , Lisogenia/fisiologia , Microbiologia da Água , Regiões Antárticas , Regiões Árticas
11.
Microb Ecol ; 53(1): 1-11, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17075732

RESUMO

The effect of viruses on the microbial loop, with particular emphasis on bacteria, was investigated over an annual cycle in 2003-2004 in Lake Druzhby and Crooked Lake, two large ultraoligotrophic freshwater lakes in the Vestfold Hills, Eastern Antarctica. Viral abundance ranged from 0.16 to 1.56 x 10(9) particles L-1 and bacterial abundances ranged from 0.10 to 0.24 x 10(9) cells L-1, with the lowest bacterial abundances noted in the winter months. Virus-to-bacteria ratios (VBR) were consistently low in both lakes throughout the season, ranging from 1.2 to 8.4. lysogenic bacteria, determined by induction with mitomycin C, were detected on three sampling occasions out of 10 in both lakes. In Lake Druzhby and Crooked Lake, lysogenic bacteria made up between 18% and 73% of the total bacteria population during the lysogenic events. Bacterial production ranged from 8.2 to 304.9 x 10(6) cells L-1 day-1 and lytic viral production ranged from 47.5 to 718.4 x 10(6) viruslike particles L-1 day-1. When only considering primary production, heterotrophic nanoflagellate (HNF) grazing and viral lysis as the major contributors to the DOC pool (i.e., autochthonous sources), we estimated a high contribution from viruses during the winter months when >60% of the carbon supplied to the DOC pool originated from viral lysis. In contrast, during the summer <20% originated from viral lysis. Our study shows that viral process in ultraoligotrophic Antarctic lakes may be of quantitative significance with respect to carbon flow especially during the dark winter period.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Água Doce/virologia , Estações do Ano , Animais , Regiões Antárticas , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bacteriólise , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Carbono/metabolismo , Ecossistema , Eucariotos/fisiologia , Água Doce/química , Água Doce/microbiologia , Lisogenia
12.
Environ Microbiol ; 9(1): 250-5, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17227429

RESUMO

The frequency of visibly phage-infected bacterial cells (FVIB) and the average number of phages per cell [i.e. burst size (BS)] were determined in Antarctic and Arctic ultra-oligotrophic freshwater environments. Water samples were collected from two Antarctic freshwater lakes and cryoconite holes from a glacier in the Arctic. Data from this bipolar study show the highest FVIB (average 26.1%, range 5.1% to 66.7%) and the lowest BS (average 4, range 2-15) ever reported in the literature. The bacterial density is low in these ultra-oligotrophic freshwater environments but a large proportion of the bacteria are visibly infected. Our results suggest that a constant virioplankton population can be maintained in these extreme environments even though host density is low and often slow growing.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Água Doce/microbiologia , Plâncton/virologia , Regiões Antárticas , Regiões Árticas , Bactérias/ultraestrutura , Ecossistema , Plâncton/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA