Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 160: 105533, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673149

RESUMO

Memory impairment is one of the disabling manifestations of multiple sclerosis (MS) possibly present from the early stages of the disease and for which there is no specific treatment. Hippocampal synaptic dysfunction and dendritic loss, associated with microglial activation, can underlie memory deficits, yet the molecular mechanisms driving such hippocampal neurodegeneration need to be elucidated. In early-stage experimental autoimmune encephalomyelitis (EAE) female mice, we assessed the expression level of molecules involved in microglia-neuron interactions within the dentate gyrus and found overexpression of genes of the complement pathway. Compared to sham immunized mice, the central element of the complement cascade, C3, showed the strongest and 10-fold upregulation, while there was no increase of downstream factors such as the terminal component C5. The combination of in situ hybridization with immunofluorescence showed that C3 transcripts were essentially produced by activated microglia. Pharmacological inhibition of C3 activity, by daily administration of rosmarinic acid, was sufficient to prevent early dendritic loss, microglia-mediated phagocytosis of synapses in the dentate gyrus, and memory impairment in EAE mice, while morphological markers of microglial activation were still observed. In line, when EAE was induced in C3 deficient mice (C3KO), dendrites and spines of the dentate gyrus as well as memory abilities were preserved. Altogether, these data highlight the central role of microglial C3 in early hippocampal neurodegeneration and memory impairment in EAE and, therefore, pave the way toward new neuroprotective strategies in MS to prevent cognitive deficit using complement inhibitors.


Assuntos
Complemento C3/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Degeneração Neural/metabolismo , Animais , Cinamatos/farmacologia , Complemento C3/antagonistas & inibidores , Complemento C3/genética , Convertases de Complemento C3-C5/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Depsídeos/farmacologia , Encefalomielite Autoimune Experimental/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Molibdoferredoxina , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Fagocitose/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido Rosmarínico
2.
Front Cell Neurosci ; 16: 802411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221920

RESUMO

Over the last century, westernization of dietary habits has led to a dramatic reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). In particular, low maternal intake of n-3 PUFAs throughout gestation and lactation causes defects in brain myelination. Microglia are recognized for their critical contribution to neurodevelopmental processes, such as myelination. These cells invade the white matter in the first weeks of the post-natal period, where they participate in oligodendrocyte maturation and myelin production. Therefore, we investigated whether an alteration of white matter microglia accompanies the myelination deficits observed in the brain of n-3 PUFA-deficient animals. Macroscopic imaging analysis shows that maternal n-3 PUFA deficiency decreases the density of white matter microglia around post-natal day 10. Microscopic electron microscopy analyses also revealed alterations of microglial ultrastructure, a decrease in the number of contacts between microglia and myelin sheet, and a decreased amount of myelin debris in their cell body. White matter microglia further displayed increased mitochondrial abundance and network area under perinatal n-3 PUFA deficiency. Overall, our data suggest that maternal n-3 PUFA deficiency alters the structure and function of microglial cells located in the white matter of pups early in life, and this could be the key to understand myelination deficits during neurodevelopment.

3.
Cannabis Cannabinoid Res ; 6(6): 488-507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591647

RESUMO

Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.


Assuntos
Canabinoides , Encefalite , Animais , Masculino , Camundongos , Microglia , Doenças Neuroinflamatórias , Receptores de Canabinoides/genética
4.
Brain Struct Funct ; 223(2): 883-895, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022091

RESUMO

The medial prefrontal cortex (mPFC) is a key area for the regulation of numerous brain functions including stress response and cognitive processes. This brain area is also particularly affected by adversity during early life. Using an animal model in rats, we recently demonstrated that maternal exposure to a high-fat diet (HFD) prevents maternal separation (MS)-induced gene expression alterations in the developing PFC and attenuates several long-term deleterious behavioral effects of MS. In the present study, we ask whether maternal HFD could protect mPFC neurons of pups exposed to early life stress by examining dendritic morphology and spine density in juvenile [postnatal day (PND) 21] and adult rats submitted to MS. Dams were fed either a control or an HFD throughout gestation and lactation, and pups were submitted to MS from PND2 to PND14. We report that maternal HFD prevents MS-induced spine loss at PND21 and dendritic atrophy at adulthood. Furthermore, we show in adult MS rats that PFC-dependent memory extinction deficits are prevented by maternal HFD. Finally, perinatal HFD exposure reverses gut leakiness following stress in pups and seems to exert an anti-stress effect in dams. Overall, our work demonstrates that maternal HFD affects the developing brain and suggests that nutrition, possibly through gut-brain interactions, could modulate mPFC sensitivity to early stress.


Assuntos
Envelhecimento , Dendritos/patologia , Dieta Hiperlipídica , Troca Materno-Fetal/fisiologia , Córtex Pré-Frontal/patologia , Estresse Psicológico/patologia , Estresse Psicológico/prevenção & controle , Animais , Animais Recém-Nascidos , Contagem de Células , Dendritos/ultraestrutura , Feminino , Trato Gastrointestinal/fisiopatologia , Masculino , Neurônios/patologia , Neurônios/ultraestrutura , Odorantes , Permeabilidade , Córtex Pré-Frontal/crescimento & desenvolvimento , Gravidez , Ratos , Ratos Wistar , Privação de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA