Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 27(5): e13216, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001433

RESUMO

N-(2-methoxybenzyl)phenethylamines (NBOMes) are a family of potent 5-HT2A agonists containing substances emerging on the illicit drug market as a replacement for N,N-diethyllysergamide (LSD). Despite the increasing use of NBOMes for diagnostic, research and recreational purposes, only a limited number of studies have focussed on their in vivo effect. Here, we investigated pharmacokinetics, systemic toxicity, thermoregulation in individually and group-housed animals, and acute behavioural effects after subcutaneous administration of 2,5-dimethoxy-4-(2-((2-methoxybenzyl)amino)ethyl)benzonitrile (25CN-NBOMe; 0.2, 1, and 5 mg/kg) in Wistar rats. Drug concentration peaked 1 h after the administration of 5 mg/kg in both blood serum and brain tissue with a half-life of 1.88 and 2.28 h, respectively. According to Organisation for Economic Co-operation and Development 423 toxicity assay, the drug is classified into category 3 with a lethal dose of 300 mg/kg and an estimated LD50 value of 200 mg/kg. Histological examination of organs collected from rats injected with the lethal dose revealed subtle pathological changes, highly suggestive of acute cardiovascular arrest due to malignant arrhythmia. Altered thermoregulation after 5 mg/kg was demonstrated by reduced body temperature in individually housed rats (p < 0.01). Behavioural effects assessed by the Open Field test and Prepulse Inhibition of Startle Response revealed that the two lower doses (0.2 and 1 mg/kg) caused a reduction in locomotor activity (p < 0.01), increased anxiety (p < 0.05) and 5 mg/kg additionally impaired sensorimotor gating (p < 0.001). In summary, 25CN-NBOMe readily passes the blood-brain barrier and exhibits a moderate level of toxicity and behavioural effect comparable with other NBOMes.


Assuntos
Alucinógenos , Animais , Regulação da Temperatura Corporal , Relação Dose-Resposta a Droga , Alucinógenos/farmacologia , Fenetilaminas , Ratos , Ratos Wistar
2.
Addict Biol ; 26(2): e12906, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378298

RESUMO

Naphthylpyrovalerone (naphyrone) is a pyrovalerone cathinone that potently inhibits monoamine transporters and provides stimulatory-entactogenic effects. Little is known about the safety of naphyrone or its effects in vivo, and more research is needed to acquire knowledge about its fundamental effects on physiology and behaviour. Our objective was to investigate naphyrone's pharmacokinetics, acute toxicity, hyperthermic potential and stimulatory and psychotomimetic properties in vivo in male Wistar rats. Pharmacokinetics after 1 mg/kg subcutaneous (sc.) naphyrone were measured over 6 h in serum, the brain, liver and lungs. Rectal temperature (degree Celsius) was measured over 10 h in group-versus individually housed rats after 20 mg/kg sc. In the behavioural experiments, 5, 10 or 20 mg/kg of naphyrone was administered 15 or 60 min prior to testing. Stimulation was assessed in the open field, and sensorimotor processing in a prepulse inhibition (PPI) task. Peak concentrations of naphyrone in serum and tissue were reached at 30 min, with a long-lasting elevation in the brain/serum ratio, consistent with observations of lasting hyperlocomotion in the open field and modest increases in body temperature. Administration of 20 mg/kg transiently enhanced PPI. Naphyrone crosses the blood-brain barrier rapidly and is eliminated slowly, and its long-lasting effects correspond to its pharmacokinetics. No specific signs of acute toxicity were observed; therefore, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacocinética , Drogas Ilícitas/farmacocinética , Pentanonas/farmacocinética , Pirrolidinas/farmacocinética , Animais , Temperatura Corporal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Drogas Ilícitas/farmacologia , Masculino , Pentanonas/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Wistar
3.
Front Pharmacol ; 14: 1120419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969854

RESUMO

Introduction: N-2-methoxy-benzylated ("NBOMe") analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b']difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine). Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.). Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug's effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes. Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.

4.
Behav Brain Res ; 421: 113713, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34906607

RESUMO

Naphyrone, also known as NRG-1, is a novel psychoactive substance (NPS), a cathinone with stimulatory properties available on the grey/illicit drug market for almost a decade. It is structurally related to infamously known powerful stimulants with the pyrovalerone structure, such as alpha-pyrrolidinovalerophenone (α-PVP) or methylenedioxypyrovalerone (MDPV) that are labeled as a cheap replacement for cocaine and other stimulants. Despite the known addictive potential of α-PVP and MDPV, there are no studies directly evaluating naphyrone's addictive potential e.g., in conditioned place preference (CPP) test or using self-administration. Therefore, our study was designed to evaluate the addictive potential in a CPP test in male Wistar rats and compare its effect to another powerful stimulant with a high addictive potential - methamphetamine. Naphyrone increased time spent in the drug-paired compartment with 5 and 20 mg/kg s.c. being significant and 10 mg/kg s.c. reaching the threshold (p = 0.07); the effect was comparable to that of methamphetamine 1.5 mg/kg s.c. The lowest dose, naphyrone 1 mg/kg s.c., had no effect on CPP. Interestingly, no dose response effect was detected. Based on these data, we are able to conclude that naphyrone has an addictive potential and may possess a significant risk to users.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Metanfetamina/farmacologia , Pentanonas/farmacologia , Pirrolidinas/farmacologia , Transtornos Relacionados ao Uso de Substâncias , Alcaloides/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/administração & dosagem , Pentanonas/administração & dosagem , Pirrolidinas/administração & dosagem , Ratos , Ratos Wistar
5.
Br J Pharmacol ; 179(1): 65-83, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519023

RESUMO

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.


Assuntos
Comportamento Animal , Drogas Ilícitas , Ketamina , Locomoção , Animais , Comportamento Animal/efeitos dos fármacos , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/farmacocinética , Drogas Ilícitas/farmacologia , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Ketamina/análogos & derivados , Ketamina/farmacocinética , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Metabolites ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822433

RESUMO

Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran ("Fly") moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.

7.
Metabolites ; 11(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807281

RESUMO

N-Benzylphenethylamines are novel psychedelic substances increasingly used for research, diagnostic, or recreational purposes. To date, only a few metabolism studies have been conducted for N-2-methoxybenzylated compounds (NBOMes). Thus, the available 2,5-dimethoxy-4-(2-((2-methoxybenzyl)amino)ethyl)benzonitrile (25CN-NBOMe) metabolism data are limited. Herein, we investigated the metabolic profile of 25CN-NBOMe in vivo in rats and in vitro in Cunninghamella elegans (C. elegans) mycelium and human liver microsomes. Phase I and phase II metabolites were first detected in an untargeted screening, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of the most abundant metabolites by comparison with in-house synthesized reference materials. The major metabolic pathways described within this study (mono- and bis-O-demethylation, hydroxylation at different positions, and combinations thereof, followed by the glucuronidation, sulfation, and/or N-acetylation of primary metabolites) generally correspond to the results of previously reported metabolism of several other NBOMes. The cyano functional group was either hydrolyzed to the respective amide or carboxylic acid or remained untouched. Differences between species should be taken into account in studies of the metabolism of novel substances.

8.
Fundam Clin Pharmacol ; 32(6): 589-602, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29863789

RESUMO

The adipokinetic and red pigment-concentrating hormone (AKH/RPCH) family of peptides controls fat, carbohydrate, and protein metabolism in insects. In our previous study, we showed that AKH possesses antidepressant, anxiolytic, and analgesic effects, causes hyperlocomotion, and exerts neuroprotective effects and increased brain neurotrophic factors in mice. The aim of this study was to investigate the effects of Anax imperator AKH (Ani-AKH), Libellula auripennis AKH (Lia-AKH), and Phormia-Terra hypertrehalosemic hormone (Pht-HrTH) on MK-801-induced memory deterioration in the active allothetic place avoidance test (AAPA) and MK-801-induced sensorimotor gating deficit in the prepulse inhibition test (PPI). In the AAPA task, Long-Evans rats were treated with Ani-AKH (2 mg/kg), Lia-AKH (2 mg/kg), Pht-HrTH (2 mg/kg), MK-801 (0.15 mg/kg), and the combination of MK-801 with the hormones subchronically. In the prepulse inhibition test, Wistar albino rats were treated with Ani-AKH (1 mg/kg), Lia-AKH (1 mg/kg), Pht-HrTH (1 mg/kg), MK-801 (0.1 mg/kg), or the combination of MK-801 with hormones acutely before the test. In our study, Ani-AKH (2 mg/kg), Lia-AKH (2 mg/kg), and Pht-HrTH (2 mg/kg) reversed MK-801 (0.15 mg/kg)-induced cognitive memory impairment effects in the AAPA task. Lia-AKH (1 mg/kg) significantly potentiated the MK-801-induced PPI disruption, while Ani-AKH (1 mg/kg) partially potentiated the impairment caused by MK-801, and Pht-HrTH did not modify the effect of MK-801. In conclusion, AKH had no effect in sensorimotor gating deficits in the PPI test in schizophrenia model while AKH improved memory in the schizophrenia model of MK-801.


Assuntos
Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Esquizofrenia/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Neuropeptídeos/farmacologia , Fármacos Neuroprotetores , Ácido Pirrolidonocarboxílico/farmacologia , Ratos , Ratos Long-Evans , Ratos Wistar , Esquizofrenia/induzido quimicamente
9.
Front Neurosci ; 12: 703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405327

RESUMO

Synthetic cannabinoid compounds are marketed as "legal" marijuana substitutes, even though little is known about their behavioral effects in relation to their pharmacokinetic profiles. Therefore, in the present study we assessed the behavioral effects of systemic treatment with the two synthetic cannabinoids JWH-073 and JWH-210 and the phytocannabinoid Δ9-THC on locomotor activity, anxiety-like phenotype (in the open field) and sensorimotor gating (measured as prepulse inhibition of the acoustic startle response, PPI), in relation to cannabinoid serum levels. Wistar rats were injected subcutaneously (sc.) with JWH-073 (0.1, 0.5, or 5 mg/kg), JWH-210 (0.1, 0.5, or 5 mg/kg), Δ9-THC (1 or 3 mg/kg) or vehicle (oleum helanti) in a volume of 0.5 ml/kg and tested in the open field and PPI. Although JWH-073, JWH-210, Δ9-THC (and its metabolites) were confirmed in serum, effects on sensorimotor gating were absent, and locomotor activity was only partially affected. Δ9-THC (3 mg/kg) elicited an anxiolytic-like effect as suggested by the increased time spent in the center of the open field (p < 0.05). Our results further support the potential anxiolytic-like effect of pharmacological modulation of the endocannabinoid system.

10.
Front Psychiatry ; 8: 306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375408

RESUMO

Mephedrone (MEPH) is a synthetic cathinone derivative with effects that mimic MDMA and/or cocaine. Our study in male Wistar rats provides detailed investigations of MEPH's and its primary metabolite nor-mephedrone's (nor-MEPH) pharmacokinetics and bio-distribution to four different substrates (serum, brain, lungs, and liver), as well as comparative analysis of their effects on locomotion [open field test (OFT)] and sensorimotor gating [prepulse inhibition of acoustic startle reaction (PPI ASR)]. Furthermore, in order to mimic the crowded condition where MEPH is typically taken (e.g., clubs), the acute effect of MEPH on thermoregulation in singly- and group-housed rats was evaluated. Pharmacokinetics of MEPH and nor-MEPH after MEPH (5 mg/kg, sc.) were analyzed over 8 h using liquid chromatography with mass spectrometry. MEPH (2.5, 5, or 20 mg/kg, sc.) and nor-MEPH (5 mg/kg, sc.) were administered 5 or 40 min before the behavioral testing in the OFT and PPI ASR; locomotion and its spatial distribution, ASR, habituation and PPI itself were quantified. The effect of MEPH on rectal temperature was measured after 5 and 20 mg/kg, sc. Both MEPH and nor-MEPH were detected in all substrates, with the highest levels detected in lungs. Mean brain: serum ratios were 1:1.19 (MEPH) and 1:1.91 (nor-MEPH), maximum concentrations were observed at 30 min; at 2 and 4 h after administration, nor-MEPH concentrations were higher compared to the parent drug. While neither of the drugs disrupted PPI, both increased locomotion and affected its spatial distribution. The effects of MEPH were dose dependent, rapid, and short-lasting, and the intensity of locomotor stimulant effects was comparable between MEPH and nor-MEPH. Despite the disappearance of behavioral effects within 40 min after administration, MEPH induced rectal temperature elevations that persisted for 3 h even in singly housed rats. To conclude, we observed a robust, short-lasting, and most likely synergistic stimulatory effect of both drugs which corresponded to brain pharmacokinetics. The dissociation between the duration of behavioral and hyperthermic effects is indicative of the possible contribution of nor-MEPH or other biologically active metabolites. This temporal dissociation may be related to the risk of prolonged somatic toxicity when stimulatory effects are no longer present.

11.
Eur Neuropsychopharmacol ; 27(12): 1223-1237, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29129557

RESUMO

Metabolic and behavioural effects of, and interactions between Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are influenced by dose and administration route. Therefore we investigated, in Wistar rats, effects of pulmonary, oral and subcutaneous (sc.) THC, CBD and THC+CBD. Concentrations of THC, its metabolites 11-OH-THC and THC-COOH, and CBD in serum and brain were determined over 24h, locomotor activity (open field) and sensorimotor gating (prepulse inhibition, PPI) were also evaluated. In line with recent knowledge we expected metabolic and behavioural interactions between THC and CBD. While cannabinoid serum and brain levels rapidly peaked and diminished after pulmonary administration, sc. and oral administration produced long-lasting levels of cannabinoids with oral reaching the highest brain levels. Except pulmonary administration, CBD inhibited THC metabolism resulting in higher serum/brain levels of THC. Importantly, following sc. and oral CBD alone treatments, THC was also detected in serum and brain. S.c. cannabinoids caused hypolocomotion, oral treatments containing THC almost complete immobility. In contrast, oral CBD produced mild hyperlocomotion. CBD disrupted, and THC tended to disrupt PPI, however their combination did not. In conclusion, oral administration yielded the most pronounced behavioural effects which corresponded to the highest brain levels of cannabinoids. Even though CBD potently inhibited THC metabolism after oral and sc. administration, unexpectedly it had minimal impact on THC-induced behaviour. Of central importance was the novel finding that THC can be detected in serum and brain after administration of CBD alone which, if confirmed in humans and given the increasing medical use of CBD-only products, might have important legal and forensic ramifications.


Assuntos
Encéfalo/metabolismo , Canabidiol/farmacocinética , Dronabinol/farmacocinética , Comportamento Exploratório/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Estimulação Acústica , Administração por Inalação , Administração Oral , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Canabidiol/administração & dosagem , Dronabinol/administração & dosagem , Vias de Administração de Medicamentos , Combinação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Injeções Subcutâneas , Masculino , Ratos , Ratos Wistar , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
12.
Front Psychiatry ; 8: 232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204126

RESUMO

Methylone (3,4-methylenedioxy-N-methylcathinone) is a synthetic cathinone analog of the recreational drug ecstasy. Although it is marketed to recreational users as relatively safe, fatalities due to hyperthermia, serotonin syndrome, and multi-organ system failure have been reported. Since psychopharmacological data remain scarce, we have focused our research on pharmacokinetics, and on a detailed evaluation of temporal effects of methylone and its metabolite nor-methylone on behavior and body temperature in rats. Methylone [5, 10, 20, and 40 mg/kg subcutaneously (s.c.)] and nor-methylone (10 mg/kg s.c.) were used in adolescent male Wistar rats across three behavioral/physiological procedures and in two temporal windows from administration (15 and 60 min) in order to test: locomotor effects in the open field, sensorimotor gating in the test of prepulse inhibition (PPI), and effects on rectal temperature in individually and group-housed rats. Serum and brain pharmacokinetics after 10 mg/kg s.c. over 8 h were analyzed using liquid chromatography mass spectrometry. Serum and brain levels of methylone and nor-methylone peaked at 30 min after administration, both drugs readily penetrated the brain with serum: brain ratio 1:7.97. Methylone dose-dependently increased overall locomotion. It also decrease the amount of time spent in the center of open field arena in dose 20 mg/kg and additionally this dose induced stereotyped circling around the arena walls. The maximum of effects corresponded to the peak of its brain concentrations. Nor-methylone had approximately the same behavioral potency. Methylone also has weak potency to disturb PPI. Behavioral testing was not performed with 40 mg/kg, because it was surprisingly lethal to some animals. Methylone 10 and 20 mg/kg s.c. induced hyperthermic reaction which was more pronounced in group-housed condition relative to individually housed rats. To conclude, methylone increased exploration and/or decreased anxiety in the open field arena and with nor-methylone had short duration of action with effects typical for mixed indirect dopamine-serotonin agonists such as 3,4-metyhlenedioxymethamphetamine (MDMA) or amphetamine. Given the fact that the toxicity was even higher than the known for MDMA and that it can cause hyperthermia it possess a threat to users with the risk for serotonin syndrome especially when used in crowded conditions.

13.
Physiol Behav ; 104(3): 378-83, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21536058

RESUMO

Significant inter-individual variation in the rate of animal metabolism is a widespread phenomenon that has started to accumulate general interest. Here we follow recent calls to focus on linkage between the variation in energy metabolism and animal personality. By using wild caught root voles as a study species, we examined the relationship between the behavioral patterns (assessed in open field test) and resting metabolic rate (RMR), both of which are known to show large individual differences and intra-individual consistency in voles. Our results showed only a weak relationship between personality traits and metabolism, since the most parsimonious model (according to AICc) explaining RMR included only body mass and season as factors (explaining 84.8% of variation in RMR). However, the next two alternative models (within ΔAICc=2) also included the personality trait reflecting proactive behaviors (PC1) in addition to body mass, sex and season (85.2 and 85.8% of RMR variance explained, respectively). In all, our study does not provide compelling support for recent ideas of close linkage between behavior and metabolism. Still, our study highlights that even in the case of wild caught individuals, when behavior and metabolism often carry effects of both intrinsic and extrinsic conditions, the potential metabolic effects of varying energetically costly behaviors cannot be neglected.


Assuntos
Arvicolinae/metabolismo , Arvicolinae/psicologia , Comportamento Animal/fisiologia , Consumo de Oxigênio/fisiologia , Personalidade , Análise de Variância , Animais , Índice de Massa Corporal , Comportamento Exploratório/fisiologia , Feminino , Inibição Psicológica , Masculino , Análise de Componente Principal , Descanso/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA