Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytochemistry ; 68(8): 1219-26, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17336350

RESUMO

Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH). Upon enzymatic treatment, XGA oligosaccharides were primarily produced from pectin extracts obtained from the young and mature leaves and to a lesser extent from those originating from the stem of A. thaliana. The oligosaccharide GalA(3)Xyl was predominantly formed from these pectin extracts. No XGA oligosaccharides were detected in digests of pectin extracts from the seeds and roots. A low number of XGA oligosaccharides was obtained from pectins of A. thaliana. This indicates a uniform distribution of xylose in XGA from A. thaliana. The predominant production of GalA(3)Xyl, as well as the release of linear GalA oligosaccharides pointed to a lower degree of xylose substitution in XGA from A. thaliana than in XGA from apple and potato. The estimated amount of XGA accounted for approximately 2.5%, 7% and 6% (w/w) of the total carbohydrate in the pectin fraction of the stem, young leaves and mature leaves, respectively.


Assuntos
Arabidopsis/química , Parede Celular/química , Ácidos Hexurônicos/análise , Fracionamento Químico , Ácidos Hexurônicos/química , Ácidos Hexurônicos/isolamento & purificação , Hidrólise , Pectinas/química , Pectinas/isolamento & purificação , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Sementes/química
2.
Plant Cell ; 20(5): 1289-302, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18460606

RESUMO

Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGA to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácidos Hexurônicos/metabolismo , Pentosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , DNA Bacteriano/genética , Teste de Complementação Genética , Complexo de Golgi/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Pectinas/metabolismo , Pentosiltransferases/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicotiana/genética , Nicotiana/metabolismo , Xilose/metabolismo , UDP Xilose-Proteína Xilosiltransferase
3.
Plant Physiol ; 140(1): 49-58, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16377743

RESUMO

The function of a putative glycosyltransferase (At2g35100) was investigated in Arabidopsis (Arabidopsis thaliana). The protein is predicted to be a type 2 membrane protein with a signal anchor. Two independent mutant lines with T-DNA insertion in the ARABINAN DEFICIENT 1 (ARAD1) gene were analyzed. The gene was shown to be expressed in all tissues but particularly in vascular tissues of leaves and stems. Analysis of cell wall polysaccharides isolated from leaves and stems showed that arabinose content was reduced to about 75% and 46%, respectively, of wild-type levels. Immunohistochemical analysis indicated a specific decrease in arabinan with no change in other pectic domains or in glycoproteins. The cellular structure of the stem was also not altered. Isolated rhamnogalacturonan I from mutant tissues contained only about 30% of the wild-type amount of arabinose, confirming the specific deficiency in arabinan. Linkage analysis showed that the small amount of arabinan present in mutant tissue was structurally similar to that of the wild type. Transformation of mutant plants with the ARAD1 gene driven by the 35S promoter led to full complementation of the phenotype, but none of the transformants had more arabinan than the wild-type level. The data suggest that ARAD1 is an arabinan alpha-1,5-arabinosyltransferase. To our knowledge, the identification of other L-arabinosyltransferases has not been published.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Proteínas de Membrana/fisiologia , Pentosiltransferases/fisiologia , Polissacarídeos/biossíntese , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabinose/metabolismo , Parede Celular/química , Clonagem Molecular , DNA Bacteriano , Genes Reporter , Teste de Complementação Genética , Imuno-Histoquímica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Família Multigênica , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Filogenia , Homologia de Sequência de Aminoácidos , Transformação Genética
4.
Planta ; 222(4): 613-22, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16059719

RESUMO

An insertion in the promoter of the Arabidopsis thaliana QUA1 gene (qua1-1 allele) leads to a dwarf plant phenotype and a reduction in cell adhesion, particularly between epidermal cells in seedlings and young leaves. This coincides with a reduction in the level of homogalacturonan epitopes and the amount of GalA in isolated cell walls (Bouton et al., Plant Cell 14: 2577 2002). The present study was undertaken in order to investigate further the link between QUA1 and cell wall biosynthesis. We have used rapidly elongating inflorescence stems to compare cell wall biosynthesis in wild type and qua1-1 mutant tissue. Relative to the wild type, homogalacturonan alpha-1-4-D-galacturonosyltransferase activity was consistently reduced in qua1-1 stems (by about 23% in microsomal and 33% in detergent-solubilized membrane preparations). Activities of beta-1-4-D-xylan synthase, beta-1-4-D-galactan synthase and beta-glucan synthase II activities were also measured in microsomal membranes. Of these, only beta-1-4-D-xylan synthase was affected, and was reduced by about 40% in qua1-1 stems relative to wild type. The mutant phenotype was apparent in inflorescence stems, and was investigated in detail using microscopy and cell wall composition analyses. Using in situ PCR techniques, QUA1 mRNA was localized to discrete cells of the vascular tissue and subepidermal layers. In mutant stems, the organization of these tissues was disrupted and there was a modest reduction in homogalacturonan (JIM5) epitopes. This study demonstrates a specific role for QUA1 in the development of vascular tissue in rapidly elongating inflorescence stems and supports a role of QUA1 in pectin and hemicellulose cell wall synthesis through affects on alpha-1,4-D-galacturonosyltransferase and beta-1,4-D-xylan synthase activities.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Parede Celular/metabolismo , Hexosiltransferases/fisiologia , Pectinas/biossíntese , Pentosiltransferases/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/química , Expressão Gênica , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Monossacarídeos/química , Caules de Planta/enzimologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Ácidos Urônicos/química
5.
Planta ; 220(4): 609-20, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15517357

RESUMO

Two lines of transgenic potato (Solanum tuberosum L.) plants modified in their cell wall structure were characterized and compared to wild type with regard to biomechanical properties in order to assign functional roles to the particular cell wall polysaccharides that were targeted by the genetic changes. The targeted polymer was rhamnogalacturonan I (RG-I), a complex pectic polysaccharide comprised of mainly neutral oligosaccharide side chains attached to a backbone of alternating rhamnosyl and galacturonosyl units. Tuber rhamnogalacturonan I molecules from the two transformed lines are reduced in linear galactans and branched arabinans, respectively. The transformed tuber tissues were found to be more brittle when subjected to uniaxial compression and the side-chain truncation was found to be correlated with the physical properties of the tissue. Interpretation of the force-deflection curves was aided by a mathematical model that describes the contribution of the cellulose microfibrils, and the results lead to the proposition that the pectic matrix plays a role in transmitting stresses to the load-bearing cellulose microfibrils and that even small changes to the rheological properties of the matrix have consequences for the biophysical properties of the wall.


Assuntos
Pectinas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Cinética , Pectinas/química , Reologia , Especificidade da Espécie , Água/metabolismo
6.
Plant Physiol ; 130(1): 432-41, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12226522

RESUMO

Arabinoxylan arabinosyltransferase (AX-AraT) activity was investigated using microsomes and Golgi vesicles isolated from wheat (Triticum aestivum) seedlings. Incubation of microsomes with UDP-[(14)C]-beta-L-arabinopyranose resulted in incorporation of radioactivity into two different products, although most of the radioactivity was present in xylose (Xyl), indicating a high degree of UDP-arabinose (Ara) epimerization. In isolated Golgi vesicles, the epimerization was negligible, and incubation with UDP-[(14)C]Ara resulted in formation of a product that could be solubilized with proteinase K. In contrast, when Golgi vesicles were incubated with UDP-[(14)C]Ara in the presence of unlabeled UDP-Xyl, the product obtained could be solubilized with xylanase, whereas proteinase K had no effect. Thus, the AX-AraT is dependent on the synthesis of unsubstituted xylan acting as acceptor. Further analysis of the radiolabeled product formed in the presence of unlabeled UDP-Xyl revealed that it had an apparent molecular mass of approximately 500 kD. Furthermore, the total incorporation of [(14)C]Ara was dependent on the time of incubation and the amount of Golgi protein used. AX-AraT activity had a pH optimum at 6, and required the presence of divalent cations, Mn(2+) being the most efficient. In the absence of UDP-Xyl, a single arabinosylated protein with an apparent molecular mass of 40 kD was radiolabeled. The [(14)C]Ara labeling became reversible by adding unlabeled UDP-Xyl to the reaction medium. The possible role of this protein in arabinoxylan biosynthesis is discussed.


Assuntos
Complexo de Golgi/metabolismo , Pentosiltransferases/metabolismo , Triticum/enzimologia , Xilanos/biossíntese , Radioisótopos de Carbono , Cromatografia em Gel , Complexo de Golgi/enzimologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Açúcares de Uridina Difosfato/farmacologia , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA