Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 35(2): e4987, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32931605

RESUMO

The aim of this work was to develop and validate an analytical method using HPLC for the determination of propranolol in the different layers of the skin to be used in kinetic studies of skin permeation. The development of the method was based on the suitability of the chromatogram, and the validation followed the international health regulation for bioanalytical methods. In addition, the method was tested in an in vitro permeation assay using porcine skin. The drug was determined using an RP-C18 column at 30°C, a mobile phase comprising acidic aqueous phase:acetonitrile (75:25 v/v), at a flow rate of 1.0 mL min-1 , and UV detection at 290 nm. The method was demonstrated to be selective against skin contaminants, linear in a wide range of concentrations (3-20 µg mL-1 ), sensitive enough to quantify less than 0.1% of the drug dosage in skin matrices, and precise regardless of analysis variations such as day of analysis, analyst, or equipment. In addition, the method presented a high drug extraction capacity greater than 90% for all skin layers (stratum corneum, hair follicle, and remaining skin). Finally, the method was successfully tested in skin permeation assays, proving its value in the development of topical formulations containing propranolol.


Assuntos
Cromatografia de Fase Reversa/métodos , Propranolol/análise , Propranolol/farmacocinética , Pele/química , Animais , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Absorção Cutânea
2.
AAPS PharmSciTech ; 22(8): 263, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729662

RESUMO

Fused deposition modeling (FDM) 3D printing has demonstrated high potential for the production of personalized medicines. However, the heating at high temperatures inherent to this process causes unknown risks to the drug product's stability. The present study aimed to assess the use of a tailored preformulation protocol involving physicochemical assessments, including the rheological profiles of the samples, to guide the development of medicines by FDM 3D printing. For this, polymers commonly used in FDM printing, i.e., high impact polystyrene (HIPS), polylactic acid (PLA), and polyvinyl alcohol (PVA), and their common plasticizers (mineral oil, triethyl citrate, and glycerol, respectively) were evaluated using the thermolabile model drug isoniazid (INH). Samples were analyzed by chemical and physical assays. The results showed that although the drug could produce polymorphs under thermal processing, the polymeric matrix can be a protective element, and no polymorphic transformation was observed. However, incompatibilities between materials might impact their chemical, thermal, and rheological performances. In fact, ternary mixtures of INH, PLA, and TEC showed a major alteration in their viscoelastic behavior besides the chemical changes. On the other hand, the use of plasticizers for HIPS and PVA exhibited positive consequences in drug solubility and rheologic behavior, probably improving sample printability. Thus, the optimization of the FDM 3D printing based on preformulation studies can assist the choice of compatible components and seek suitable processing conditions to obtain pharmaceutical products.


Assuntos
Excipientes , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Impressão Tridimensional , Solubilidade
3.
AAPS PharmSciTech ; 22(2): 67, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33554316

RESUMO

It is well known that the splitting of tablets can bring serious risks to the health of the treated animals, e.g., the possible adverse reactions caused by overdoses of fenbendazole or aspirin. In this regard, this work aimed to evaluate, for the first time, the splitting behavior of commercial veterinary tablets and identifying the technological aspects that interfere in this process. Tablets were cut in halves using a tablet splitter and were analyzed regarding mass variation, mass loss, friability, and hardness. Microstructural and morphological evaluations were also performed. For most of the tablets, organic flavor additives provided more uniformity and cohesive matrix, which preserved its hardness after the cut and led to subdivision results within acceptable limits for mass measurements and friability. Apart from the microstructure, the most critical technological aspect for a correct splitting performance in such tablets was the presence of a score. Thus, the results presented here allow us to guide the manufacturing of veterinary drug products in order to produce tablets more adapted to the splitting process.


Assuntos
Comprimidos/química , Medicina Veterinária , Animais , Composição de Medicamentos/métodos , Dureza
4.
Pharmaceutics ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258088

RESUMO

This work aimed to develop a three-dimensional (3D) wearable drug-loaded earring tap to treat affections caused by aesthetic perforations. The initial phase involved a combination of polymers to prepare filaments for fused deposition modeling (FDM) 3D printing using a centroid mixture design. Optimized filament compositions were used in the second phase to produce 3D printed earring taps containing the anti-inflammatory naringenin. Next, samples were assessed via physicochemical assays followed by in vitro skin permeation studies with porcine ear skin. Two filament compositions were selected for the study's second phase: one to accelerate drug release and another with slow drug dissolution. Both filaments demonstrated chemical compatibility and amorphous behavior. The use of the polymer blend to enhance printability has been confirmed by rheological analysis. The 3D devices facilitated naringenin skin penetration, improving drug recovery from the skin's most superficial layer (3D device A) or inner layers (3D device B). Furthermore, the devices significantly decreased transdermal drug delivery compared to the control containing the free drug. Thus, the resulting systems are promising for producing 3D printed earring taps with topical drug delivery and reinforcing the feasibility of patient-centered drug administration through wearable devices.

5.
Eur J Pharm Sci ; 188: 106517, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406970

RESUMO

The in-situ formation of nanoparticles from polymer-based solid medicines, although previously described, has been overlooked despite its potential to interfere with oral drug bioavailability. Such polymeric pharmaceuticals are becoming increasingly common on the market and can become even more popular due to the dizzying advance of 3D printing medicines. Hence, this work aimed to study this phenomenon during the dissolution of 3D printed tablets produced with three different polymers, hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol (PVA), and Eudragit RL PO® (EUD RL) combined with plasticizers and the model drug naringenin (NAR). The components' interaction, dissolution behavior, and characteristics of the formed particles were investigated employing thermal, spectroscopic, mechanical, and chromatographic assays. All the systems generated stable spherical-shaped particles throughout 24 h, encapsulating over 25% of NAR. Results suggest encapsulation efficiencies variations may depend on interactions between polymer-drug, drug-plasticizer, and polymer-plasticizer, which formed stable nanoparticles even in the drug absence, as observed with the HPMCAS and EUD RL formulations. Additionally, components solubility in the medium and previous formulation treatments are also a decisive factor for nanoparticle formation. In particular, the treatment provided by hot-melt extrusion and FDM 3D printing affected the dissolution efficiency enhancing the interaction between the components, reverberating on particle size and particle formation kinetics mainly for HPMCAS and EUD RL. In conclusion, the 3D printing process influences the in-situ formation of nanoparticles, which can directly affect oral drug bioavailability and needs to be monitored.


Assuntos
Plastificantes , Polímeros , Liberação Controlada de Fármacos , Polímeros/química , Solubilidade , Comprimidos/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
6.
J Pharm Anal ; 12(3): 424-435, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35811629

RESUMO

One of the challenges in developing three-dimensional printed medicines is related to their stability due to the manufacturing conditions involving high temperatures. This work proposed a new protocol for preformulation studies simulating thermal processing and aging of the printed medicines, tested regarding their morphology and thermal, crystallographic, and spectroscopic profiles. Generally, despite the strong drug-polymer interactions observed, the chemical stability of the model drugs was preserved under such conditions. In fact, in the metoprolol and Soluplus® composition, the drug's solubilization in the polymer produced a delay in the drug decomposition, suggesting a protective effect of the matrix. Paracetamol and polyvinyl alcohol mixture, in turn, showed unmistakable signs of thermal instability and chemical decomposition, in addition to physical changes. In the presented context, establishing protocols that simulate processing and storage conditions may be decisive for obtaining stable pharmaceutical dosage forms using three-dimensional printing technology.

7.
Int J Pharm ; 627: 122240, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179928

RESUMO

Aesthetic perforations are often associated with health issues, such as itching, inflammation, or microbial infection. Accordingly, this work proposed a lacquer to be applied on the adornment accessory forming a film from which a proper drug is released. For this, lacquers were formulated containing three different permeation enhancers (limonene - LIM, propylene glycol - PG, and oleic acid - AO) combined according to a mixture design with a model anti-inflammatory natural drug (naringenin) and a soluble film-former polymer (polyvinyl alcohol). Formulations were characterized by physicochemical tests and in vitro and in vivo skin permeation studies. The lacquers were stable and provided a vectorized drug release. LIM, combined with one of the other permeation enhancers, showed a synergic effect, enhancing topical skin penetration in vitro by 53% while preventing permeation to the receptor medium. The in vivo evaluation of lacquers in rodent models showed these systems could provide higher levels of drug retention in the ear (166.4 ± 14.9 µg per ear for F4 and 174.9 ± 29.3 µg per ear for F5) compared to the control (109.2 ± 16.3 µg) without allowing its permeation into the bloodstream, confirming the local drug delivery. Moreover, the anti-inflammatory activity was achieved in the animal model developed for lacquer application on the earring, obtaining inhibition of ear swelling up to 40.8% ± 2.3 compared to the untreated ear. Thus, such an innovative lacquer proved a promising vehicle for treating affections caused by adornments, enhancing skin permeation while avoiding a systemic effect.


Assuntos
Laca , Ácido Oleico , Animais , Limoneno , Álcool de Polivinil/farmacologia , Pele , Propilenoglicol/química , Estética , Administração Cutânea
8.
Pharmaceutics ; 12(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824475

RESUMO

Here, we assessed the feasibility of hot-melt extrusion (HME) to obtain effervescent drug products for the first time. For this, a combined mixture design was employed using paracetamol as a model drug. Extrudates were obtained under reduced torque (up to 0.3 Nm) at 100 °C to preserve the stability of the effervescent salts. Formulations showed vigorous and rapid effervescent disintegration (<3 min), adequate flow characteristics, and complete solubilization of paracetamol instantly after the effervescent reaction. Formulations containing PVPVA in the concentration range of 15-20% m/m were demonstrated to be sensitive to accelerated aging conditions, undergoing marked microstructural changes, since the capture of water led to the agglomeration and loss of their functional characteristics. HPMC matrices, in contrast, proved to be resistant to storage conditions in high relative humidity, showing superior performance to controls, including the commercial product. Moreover, the combined mixture design allowed us to identify significant interactions between the polymeric materials and the disintegrating agents, showing the formulation regions in which the responses are kept within the required levels. In conclusion, this study demonstrates that HME can bring important benefits to the elaboration of effervescent drug products, simplifying the production process and obtaining formulations with improved characteristics, such as faster disintegration, higher drug solubilization, and better stability.

9.
Int J Pharm ; 588: 119728, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768526

RESUMO

The present study aimed to analyze how the printing process affects the final state of a printed pharmaceutical product and to establish prediction models for post-printing characteristics according to basic printing settings. To do this, a database was constructed through analysis of products elaborated with a distinct printing framework. The polymers acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS) were tested in a statistically-based experiment to define the most critical printing factors for mass, mass variation, printing time, and porosity. Then, a predictive model equation was established and challenged to determine two different medical prescriptions. The factors of size scale, printlet format, and print temperature influenced printlet mass, while the printing time was impacted by size scale, printing speed, and layer height. Finally, increased printing speed leads to more porous printlets. The prescript-printed tablets showed average mass, mass variations, and porosity close to theoretical values for all filaments, which supports the adequacy of the optimized design of experiments for tablet production. Hence, printing settings can be preselected according to the desired product's characteristics, resulting in tablets produced with higher precision than usually achieved by compounding pharmacies.


Assuntos
Impressão Tridimensional , Projetos de Pesquisa , Polímeros , Porosidade , Comprimidos
10.
Pharmaceutics ; 11(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893842

RESUMO

The pharmaceutical industry is set to join the fourth industrial revolution with the 3D printing of medicines. The application of 3D printers in compounding pharmacies will turn them into digital pharmacies, wrapping up the telemedicine care cycle and definitively modifying the pharmacotherapeutic treatment of patients. Fused deposition modeling 3D printing technology melts extruded drug-loaded filaments into any dosage form; and allows the obtainment of flexible dosages with different shapes, multiple active pharmaceutical ingredients and modulated drug release kinetics-in other words, offering customized medicine. This work aimed to present an update on this technology, discussing its challenges. The co-participation of the pharmaceutical industry and compounding pharmacies seems to be the best way to turn this technology into reality. The pharmaceutical industry can produce drug-loaded filaments on a large scale with the necessary quality and safety guarantees; while digital pharmacies can transform the filaments into personalized medicine according to specific prescriptions. For this to occur, adaptations in commercial 3D printers will need to meet health requirements for drug products preparation, and it will be necessary to make advances in regulatory gaps and discussions on patent protection. Thus, despite the conservatism of the sector, 3D drug printing has the potential to become the biggest technological leap ever seen in the pharmaceutical segment, and according to the most optimistic prognostics, it will soon be within reach.

11.
Int J Pharm ; 568: 118554, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336153

RESUMO

The subdivision behavior of polymeric tablets produced with the well-known polymers Soluplus® (SOL), polyvinyl pyrrolidone co-vinyl acetate (PVPVA) and hydroxypropyl methylcellulose (HPMC) was evaluated in this study. The polymeric tablets were submitted to different post-treatments (aging, thermal and exposure to compressed gaseous carbon dioxide) and its mechanical, spectroscopic and microstructure properties were assessed. SOL tablets showed the best results for tablet subdivision, particularly, the mean mass variation (3.9%) was significantly lower than the other two polymeric tablets (7.2% and 9.1% for PVPVA and HPMC, respectively), and showed better results than common tablets produced from powder matrices (7-14%). SOL tablets were also more sensitive to the different post-treatments applied, which reduced the mass loss and friability from 1.5% and 0.8%, respectively, to values close to zero and without altering their porosity. The thermal treatment of PVPVA tablets, in turn, also led to similar subdivision results, with mass loss of 0.3% and friability of 0.02%. In contrast, the granules of HPMC presented compaction difficulties making its tablets unsuitable for the subdivision process, even after additional post-treatment. Polymeric matrices with uniform internal structure and appropriate mechanical strength are the key to a better adaptation for the tablet subdivision.


Assuntos
Derivados da Hipromelose/química , Polietilenoglicóis/química , Polivinil/química , Povidona/análogos & derivados , Dióxido de Carbono/química , Temperatura Alta , Povidona/química , Comprimidos
12.
Pharmaceutics ; 10(3)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134594

RESUMO

The aim of this study was to improve the physicochemical properties of cocoa extract (CE) using hot-melt extrusion (HME) for pharmaceutical proposes. A mixture design was applied using three distinct hydrophilic polymeric matrices (Soluplus, Plasdone S630, and Eudragit E). Systems obtained by HME were evaluated using morphologic, chromatographic, thermic, spectroscopic, and diffractometric assays. The flow, wettability, and dissolution rate of HME powders were also assessed. Both CE and its marker theobromine proved to be stable under heating according to thermal analysis and Arrhenius plot under isothermal conditions. Physicochemical analysis confirmed the stability of CE HME preparations and provided evidence of drug⁻polymer interactions. Improvements in the functional characteristics of CE were observed after the extrusion process, particularly in dissolution and flow properties. In addition, the use of a mixture design allowed the identification of synergic effects by excipient combination. The optimized combination of polymers obtained considering four different aspects showed that a mixture of the Soluplus, Plasdone S630, and Eudragit E in equal proportions produced the best results (flowability index 88%; contact angle 47°; dispersibility 7.5%; and dissolution efficiency 87%), therefore making the pharmaceutical use of CE more feasible.

13.
Eur J Pharm Sci ; 96: 411-419, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746266

RESUMO

Currently marketed minoxidil formulations present inconveniences that range from a grease hard aspect they leave on the hair to more serious adverse reactions as scalp dryness and irritation. In this paper we propose a novel approach for minoxidil sulphate (MXS) delivery based on a solid effervescent formulation. The aim was to investigate whether the particle mechanical movement triggered by effervescence would lead to higher follicle accumulation. Preformulation studies using thermal, spectroscopic and morphological analysis demonstrated the compatibility between effervescent salts and the drug. The effervescent formulation demonstrated a 2.7-fold increase on MXS accumulation into hair follicles casts compared to the MXS solution (22.0±9.7µg/cm2 versus 8.3±4.0µg/cm2) and a significant drug increase (around 4-fold) in remaining skin (97.1±29.2µg/cm2) compared to the drug solution (23.5±6.1µg/cm2). The effervescent formulations demonstrated a prominent increase of drug permeation highly dependent on the effervescent mixture concentration in the formulation, confirming the hypothesis of effervescent reaction favoring drug penetration. Clinically, therapy effectiveness could be improved, increasing the administration interval, hence, patient compliance. More studies to investigate the follicular targeting potential and safety of new formulations are needed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Minoxidil/administração & dosagem , Minoxidil/metabolismo , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Animais , Química Farmacêutica , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Minoxidil/química , Técnicas de Cultura de Órgãos , Absorção Cutânea/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA