Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(35): 10047-10057, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450004

RESUMO

Filled silicone elastomers, an essential component in many technological applications, are often subjected to controlled or unintended radiation for a variety of reasons. Radiation exposure can lead to permanent mechanical and structural changes in the material, which is manifested as altered mechanical response, and in some cases, a permanent set. For unfilled elastomers, network theories developed and refined over decades can explain these effects in terms of chain-scission and cross-link formation and a hypothesis involving independent networks formed at different strain levels of the material. Here, we expose a filled silicone rubber to gamma radiation while being under finite elongational strain and show that the observed mechanical and structural changes can be quantitatively modeled within the same theoretical framework developed for unfilled elastomers as long as nuances associated with the Mullins effect are accounted for in a consistent manner. In this work, we employ Ogden's incompressible hyperelastic model within the framework of Tobolsky's two-network scheme to describe the observed permanent set and mechanical modulus changes as a function of radiation dosage. In the process, we conclude that gamma radiation induces both direct cross-linking at chain crossings (H-links) and main-chain-scission followed by cross-linking (Y-links). We provide an estimate of the ratio of chain-scission to cross-linking rates, which is in reasonable agreement with previous experimental estimate from Charlesby-Pinner analysis. We use density functional theory (DFT)-based quantum mechanical calculations to explore the stability of -Si and -SiO radicals that form upon a radiation-induced chain-scission event, which sheds light on the relative rates of Y-linking and H-linking processes.


Assuntos
Elastômeros , Elastômeros de Silicone , Raios gama , Estresse Mecânico
2.
Sci Rep ; 9(1): 15923, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685889

RESUMO

Traditional open or closed-cell stochastic elastomeric foams have wide-ranging applications in numerous industries: from thermal insulation, shock absorbing/gap-filling support cushions, packaging, to light-weight structural and positional components. Recent developments in 3D printing technologies by direct ink-write have opened the possibility of replacing stochastic foam parts by more controlled printed micro-structures with superior stress-distribution and longer functional life. For successful deployment as mechanical support or structural components, it is crucial to characterize the response of such printed materials to long-term external loads in terms of stress-strain behavior evolution and in terms of irreversible structural and load-bearing capacity changes over time. To this end, here we report a thermal-age-aware constitutive model for a 3D printed close-packed foam structure under compression. The model is based on the Ogden hyperfoam strain-energy functional within the framework of Tobolsky two-network scheme. It accurately describes experimentally measured stress-strain response, compression set, and load retention for various aging times and temperatures. Through the technique of time-temperature-superposition the model enables the prediction of long-term changes along with the quantification of uncertainty stemming from sample-to-sample variation and measurement noise. All aging parameters appear to possess the same Arrhenius activation barrier, which suggests a single dominant aging mechanism at the molecular/network level.

3.
Adv Mater ; 10(6): 462-5, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21647978
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA