Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Environ Health Res ; 31(4): 374-388, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31455092

RESUMO

Spreading and distribution of selected volatile organic compounds (VOCs) released as point source emissions in a hospital environment were investigated in two office rooms and two patient rooms. Six tracer compounds were released from six locations and their concentrations were measured in five sampling sites during two consecutive days. The air flow rates, velocity and flow direction, air temperature, pressure differences between adjacent rooms, and relative humidity and concentrations of the tracer compounds were measured. The results revealed that the size of the examined space and ventilation rates, the monitoring point should be either close to the exhaust terminal device or in the middle of the occupied zone the way that supply air flows do not interfere the measurements. Depending on the inlet terminal device and its location, the air is either delivered parallel to the ceiling or it can be directed to a desired spot into the occupied zone. The tracer compounds did spread evenly within the room and their concentrations decreased inversely with the distance. In rooms with a good ventilation, the concentrations at the exhaust air terminal units were close to those measured near the source point. The results obtained from modeling were consistent with the measurements.


Assuntos
Movimentos do Ar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Hospitais , Ventilação/estatística & dados numéricos , Compostos Orgânicos Voláteis/análise , Modelos Teóricos
2.
Int J Environ Health Res ; 29(5): 479-488, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30474394

RESUMO

In this case study, hospital workers did suffer from symptoms related to the poor indoor air quality. To investigate reasons for symptoms MM40-survey and house inspection methods were performed. The study consisted of 49 operating rooms and 470 employees. MM-40 survey revealed that over 40% of the staff suffered from skin reactions, over 50% had upper respiratory tract symptoms and 25% suffered headaches. No reason for the staff's symptom could be found in the structural studies of workplaces. The mean air exchange rate of the rooms was 5.51/h. In total 61 materials and 49 indoor air samples were taken. The most frequently found compounds in the material samples were 2-ethyl-1-hexanol and aliphatic hydrocarbons. VOC emissions were high in some of the material samples and they presumably were the one reason for the workers' symptoms observed in some in of the rooms. However, indoor air VOC concentrations were low in most of the cases. According to the linear regression model emissions from flooring material couldn't explain the indoor air concentration of the VOCs. One reason for that was the high ventilation rates of the rooms, which presumably kept VOC levels in indoors low. In addition, VOC concentrations indoors were strongly related to the ongoing healthcare activities in the hospital.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Febre/epidemiologia , Exposição Ocupacional/análise , Dor/epidemiologia , Doenças Respiratórias/epidemiologia , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Febre/induzido quimicamente , Finlândia/epidemiologia , Humanos , Dor/induzido quimicamente , Doenças Respiratórias/induzido quimicamente
3.
Build Environ ; 107: 154-168, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32287966

RESUMO

Negative pressure isolation rooms are used to house patients with highly contagious diseases (e.g. with airborne diseases) and to contain emitted pathogens to reduce the risk for cross-infection in hospitals. Airflows induced by door opening motion and healthcare worker passage can, however, transport the potentially pathogen laden air across the doorway. In this study airflow patterns across the isolation room doorway induced by the operation of single hinged and sliding doors with simulated human passage were examined. Smoke visualizations demonstrated that the hinged door opening generated a greater flow across the doorway than the sliding door. Tracer gas measurements showed that the examined ventilation rates (6 and 12 air changes per hour) had only a small effect on the air volume exchange across the doorway with the hinged door. The results were more variable with the sliding door. Supply-exhaust flow rate differential reduced the door motion-induced air transfer significantly with both door types. The experiments showed that the passage induced substantial air volume transport through the doorway with both door types. However, overall, the sliding door performed better in all tested scenarios, because the door-opening motion itself generated relatively smaller air volume exchange across the doorway, and hence should be the preferred choice in the design of isolation rooms.

4.
Data Brief ; 49: 109393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492232

RESUMO

In a Finnish-Swedish consortium project, a large amount of sound insulation tests was conducted for several intermediate floors in laboratory conditions to serve various scientific research questions. The dataset contains 30 wooden and 8 concrete constructions which are commonly used between apartments in multistorey buildings. Impact sound insulation was determined according to ISO 10140-3 standard using both tapping machine and rubber ball as standard sound sources. Airborne sound insulation was determined according to the ISO 10140-2 standard. The data are special since they have a broad frequency range: 20-5000 Hz. Data are reported in 1/3-octave frequency bands and the single-number values of ISO 717-1 and ISO 717-2 are also reported. Detailed construction drawings are available for all reported constructions. The data are highly valuable for research, education, and development purposes since all data were obtained in the same laboratory (Turku University of Applied Sciences, Turku, Finland), and all the constructions were built by the same installation team.

5.
Build Simul ; 11(3): 585-596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32218903

RESUMO

In hospital isolation rooms, door operation can lead to containment failures and airborne pathogen dispersal into the surrounding spaces. Sliding doors can reduce the containment failure arising from the door motion induced airflows, as compared to the hinged doors that are typically used in healthcare facilities. Such airflow leakage can be measured quantitatively using tracer gas techniques, but detailed observation of the turbulent flow features is very difficult. However, a comprehensive understanding of these flows is important when designing doors to further reduce such containment failures. Experiments and Computational Fluid Dynamics (CFD) modelling, by using Large-Eddy Simulation (LES) flow solver, were used to study airflow patterns in a full-scale mock-up, consisting of a sliding door separating two identical rooms (i.e. one isolation room attached to an antechamber). A single sliding door open/ hold-open/ closing cycle was studied. Additional variables included human passage through the doorway and imposing a temperature difference between the two rooms. The general structures of computationally-simulated flow features were validated by comparing the results to smoke visualizations of identical full-scale experimental set-ups. It was found that without passage the air volume leakage across the doorway was first dominated by vortex shedding in the wake of the door, but during a prolonged hold-open period a possible temperature difference soon became the predominant driving force. Passage generates a short and powerful pulse of leakage flow rate even if the walker stops to wait for the door to open. ELECTRONIC SUPPLEMENTARY MATERIAL ESM: supplementary material is available in the online version of this article at 10.1007/s12273-017-0422-8.

6.
PLoS One ; 10(7): e0130667, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151865

RESUMO

The use of hospital isolation rooms has increased considerably in recent years due to the worldwide outbreaks of various emerging infectious diseases. However, the passage of staff through isolation room doors is suspected to be a cause of containment failure, especially in case of hinged doors. It is therefore important to minimize inadvertent contaminant airflow leakage across the doorway during such movements. To this end, it is essential to investigate the behavior of such airflows, especially the overall volume of air that can potentially leak across the doorway during door-opening and human passage. Experimental measurements using full-scale mock-ups are expensive and labour intensive. A useful alternative approach is the application of Computational Fluid Dynamics (CFD) modelling using a time-resolved Large Eddy Simulation (LES) method. In this study simulated air flow patterns are qualitatively compared with experimental ones, and the simulated total volume of air that escapes is compared with the experimentally measured volume. It is shown that the LES method is able to reproduce, at room scale, the complex transient airflows generated during door-opening/closing motions and the passage of a human figure through the doorway between two rooms. This was a basic test case that was performed in an isothermal environment without ventilation. However, the advantage of the CFD approach is that the addition of ventilation airflows and a temperature difference between the rooms is, in principle, a relatively simple task. A standard method to observe flow structures is dosing smoke into the flow. In this paper we introduce graphical methods to simulate smoke experiments by LES, making it very easy to compare the CFD simulation to the experiments. The results demonstrate that the transient CFD simulation is a promising tool to compare different isolation room scenarios without the need to construct full-scale experimental models. The CFD model is able to reproduce the complex airflows and estimate the volume of air escaping as a function of time. In this test, the calculated migrated air volume in the CFD model differed by 20% from the experimental tracer gas measurements. In the case containing only a hinged door operation, without passage, the difference was only 10%.


Assuntos
Movimentos do Ar , Gases/metabolismo , Isoladores de Pacientes , Fumaça , Algoritmos , Simulação por Computador , Infecção Hospitalar/prevenção & controle , Hospitais , Humanos , Hidrodinâmica , Controle de Infecções/métodos , Modelos Teóricos , Óxido Nitroso/metabolismo , Hexafluoreto de Enxofre/metabolismo , Ventilação , Gravação em Vídeo
7.
PLoS One ; 8(6): e66663, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826109

RESUMO

Hospital isolation rooms are vital for the containment (when under negative pressure) of patients with, or the protection (when under positive pressure) of patients, from airborne infectious agents. Such facilities were essential for the management of highly contagious patients during the 2003 severe acute respiratory syndrome (SARS) outbreaks and the more recent 2009 A/H1N1 influenza pandemic. Many different types of door designs are used in the construction of such isolation rooms, which may be related to the space available and affordability. Using colored food dye as a tracer, the qualitative effects of door-opening motions on the dissemination of potentially contaminated air into and out of a single isolation room were visualized and filmed using Reynolds-number-equivalent, small-scale, water-tank models fitted with programmable door-opening and moving human figure motions. Careful scaling considerations involved in the design and construction of these water-tank models enabled these results to be accurately extrapolated to the full-scale situation. Four simple types of door design were tested: variable speed single and double, sliding and hinged doors, in combination with the moving human figure. The resulting video footage was edited, synchronized and presented in a series of split-screen formats. From these experiments, it is clear that double-hinged doors pose the greatest risk of leakage into or out of the room, followed by (in order of decreasing risk) single-hinged, double-sliding and single-sliding doors. The relative effect of the moving human figure on spreading any potential contamination was greatest with the sliding doors, as the bulk airflows induced were large relative to those resulting from these door-opening motions. However, with the hinged doors, the airflows induced by these door-opening motions were significantly greater. Further experiments involving a simulated ventilated environment are required, but from these findings alone, it appears that sliding-doors are far more effective for hospital isolation room containment.


Assuntos
Hospitais , Controle de Infecções/instrumentação , Movimento (Física) , Isolamento de Pacientes , Quartos de Pacientes , Arquitetura Hospitalar , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA