RESUMO
BACKGROUND: Novel urine biomarkers may improve identification of children at greater risk of rapid kidney function decline, and elucidate the pathophysiology of CKD progression. METHODS: We investigated the relationship between urine biomarkers of kidney tubular health (EGF and α-1 microglobulin), tubular injury (kidney injury molecule-1; KIM-1), and inflammation (monocyte chemoattractant protein-1 [MCP-1] and YKL-40) and CKD progression. The prospective CKD in Children Study enrolled children aged 6 months to 16 years with an eGFR of 30-90ml/min per 1.73m2. Urine biomarkers were assayed a median of 5 months [IQR: 4-7] after study enrollment. We indexed the biomarker to urine creatinine by dividing the urine biomarker concentration by the urine creatinine concentration to account for the concentration of the urine. The primary outcome was CKD progression (a composite of a 50% decline in eGFR or kidney failure) during the follow-up period. RESULTS: Overall, 252 of 665 children (38%) reached the composite outcome over a median follow-up of 6.5 years. After adjustment for covariates, children with urine EGF concentrations in the lowest quartile were at a seven-fold higher risk of CKD progression versus those with concentrations in the highest quartile (fully adjusted hazard ratio [aHR], 7.1; 95% confidence interval [95% CI], 3.9 to 20.0). Children with urine KIM-1, MCP-1, and α-1 microglobulin concentrations in the highest quartile were also at significantly higher risk of CKD progression versus those with biomarker concentrations in the lowest quartile. Addition of the five biomarkers to a clinical model increased the discrimination and reclassification for CKD progression. CONCLUSIONS: After multivariable adjustment, a lower urine EGF concentration and higher urine KIM-1, MCP-1, and α-1 microglobulin concentrations were each associated with CKD progression in children.
Assuntos
alfa-Globulinas/urina , Quimiocina CCL2/urina , Progressão da Doença , Fator de Crescimento Epidérmico/urina , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Insuficiência Renal Crônica/urina , Adolescente , Albuminúria/urina , Biomarcadores/urina , Criança , Proteína 1 Semelhante à Quitinase-3/urina , Creatinina/urina , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Túbulos Renais/lesões , Túbulos Renais/patologia , Masculino , Nefrite/urina , Estudos Prospectivos , Insuficiência Renal Crônica/fisiopatologiaRESUMO
BACKGROUND: After accounting for known risk factors for CKD progression in children, clinical outcomes among children with CKD still vary substantially. Biomarkers of tubular injury (such as KIM-1), repair (such as YKL-40), or inflammation (such as MCP-1, suPAR, TNF receptor-1 [TNFR-1], and TNFR-2) may identify children with CKD at risk for GFR decline. METHODS: We investigated whether plasma KIM-1, YKL-40, MCP-1, suPAR, TNFR-1, and TNFR-2 are associated with GFR decline in children with CKD and in subgroups defined by glomerular versus nonglomerular cause of CKD. We studied participants of the prospective CKiD Cohort Study which enrolled children with an eGFR of 30-90 ml/min per 1.73 m2 and then assessed eGFR annually. Biomarkers were measured in plasma collected 5 months after study enrollment. The primary endpoint was CKD progression, defined as a composite of a 50% decline in eGFR or incident ESKD. RESULTS: Of the 651 children evaluated (median age 11 years; median baseline eGFR of 53 ml/min per 1.73 m2), 195 (30%) had a glomerular cause of CKD. Over a median follow-up of 5.7 years, 223 children (34%) experienced CKD progression to the composite endpoint. After multivariable adjustment, children with a plasma KIM-1, TNFR-1, or TNFR-2 concentration in the highest quartile were at significantly higher risk of CKD progression compared with children with a concentration for the respective biomarker in the lowest quartile (a 4-fold higher risk for KIM-1 and TNFR-1 and a 2-fold higher risk for TNFR-2). Plasma MCP-1, suPAR, and YKL-40 were not independently associated with progression. When stratified by glomerular versus nonglomerular etiology of CKD, effect estimates did not differ significantly. CONCLUSIONS: Higher plasma KIM-1, TNFR-1, and TNFR-2 are independently associated with CKD progression in children.
Assuntos
Receptor Celular 1 do Vírus da Hepatite A/sangue , Inflamação/sangue , Túbulos Renais/patologia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Insuficiência Renal Crônica/sangue , Adolescente , Biomarcadores , Quimiocina CCL2/sangue , Criança , Proteína 1 Semelhante à Quitinase-3/sangue , Progressão da Doença , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Túbulos Renais/metabolismo , Masculino , Modelos de Riscos Proporcionais , Estudos Prospectivos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Insuficiência Renal Crônica/patologiaRESUMO
BACKGROUND: Worsening renal function (WRF) in the setting of aggressive diuresis for acute heart failure treatment may reflect renal tubular injury or simply indicate a hemodynamic or functional change in glomerular filtration. Well-validated tubular injury biomarkers, N-acetyl-ß-d-glucosaminidase, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1, are now available that can quantify the degree of renal tubular injury. The ROSE-AHF trial (Renal Optimization Strategies Evaluation-Acute Heart Failure) provides an experimental platform for the study of mechanisms of WRF during aggressive diuresis for acute heart failure because the ROSE-AHF protocol dictated high-dose loop diuretic therapy in all patients. We sought to determine whether tubular injury biomarkers are associated with WRF in the setting of aggressive diuresis and its association with prognosis. METHODS: Patients in the multicenter ROSE-AHF trial with baseline and 72-hour urine tubular injury biomarkers were analyzed (n=283). WRF was defined as a ≥20% decrease in glomerular filtration rate estimated with cystatin C. RESULTS: Consistent with protocol-driven aggressive dosing of loop diuretics, participants received a median 560 mg IV furosemide equivalents (interquartile range, 300-815 mg), which induced a urine output of 8425 mL (interquartile range, 6341-10 528 mL) over the 72-hour intervention period. Levels of N-acetyl-ß-d-glucosaminidase and kidney injury molecule 1 did not change with aggressive diuresis (both P>0.59), whereas levels of neutrophil gelatinase-associated lipocalin decreased slightly (-8.7 ng/mg; interquartile range, -169 to 35 ng/mg; P<0.001). WRF occurred in 21.2% of the population and was not associated with an increase in any marker of renal tubular injury: neutrophil gelatinase-associated lipocalin (P=0.21), N-acetyl-ß-d-glucosaminidase (P=0.46), or kidney injury molecule 1 (P=0.22). Increases in neutrophil gelatinase-associated lipocalin, N-acetyl-ß-d-glucosaminidase, and kidney injury molecule 1 were paradoxically associated with improved survival (adjusted hazard ratio, 0.80 per 10 percentile increase; 95% confidence interval, 0.69-0.91; P=0.001). CONCLUSIONS: Kidney tubular injury does not appear to have an association with WRF in the context of aggressive diuresis of patients with acute heart failure. These findings reinforce the notion that the small to moderate deteriorations in renal function commonly encountered with aggressive diuresis are dissimilar from traditional causes of acute kidney injury.
Assuntos
Injúria Renal Aguda/induzido quimicamente , Diurese/efeitos dos fármacos , Taxa de Filtração Glomerular/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Rim/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/efeitos adversos , Acetilglucosaminidase/urina , Doença Aguda , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Biomarcadores/urina , Creatinina/sangue , Cistatina C/sangue , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Rim/fisiopatologia , Lipocalina-2/urina , Masculino , Pessoa de Meia-Idade , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Fatores de Tempo , Resultado do Tratamento , Estados UnidosRESUMO
RATIONALE & OBJECTIVE: Intradialytic hypotension (IDH) is a common complication at the initiation of hemodialysis (HD) therapy, is associated with greater mortality, and may be related to relatively rapid shifts in plasma osmolality. This study sought to evaluate the effect of an intervention to minimize intradialytic changes in plasma osmolality on the occurrence of IDH. STUDY DESIGN: Double-blind, single-center, randomized, controlled trial. SETTING & PARTICIPANTS: Individuals requiring initiation of HD for acute or chronic kidney disease. INTERVENTION: Mannitol, 0.25g/kg/h, versus a similar volume of 0.9% saline solution during the first 3 HD sessions. OUTCOMES: The primary end point was average decline in systolic blood pressure (SBP). The secondary end point was the proportion of total sessions complicated by IDH (defined as a decrease ≥ 20mm Hg from the pre-HD SBP). Exploratory end points included biomarkers of cardiac and kidney injury. RESULTS: 52 patients were randomly assigned and contributed to 156 study visits. There were no significant differences in average SBP decline between the mannitol and placebo groups (15±11 vs 19±16mm Hg; P = 0.3). The proportion of total sessions complicated by IDH was lower in the mannitol group compared to placebo (25% vs 43%), with a nominally lower risk for developing an episode of IDH (OR, 0.38; 95% CI, 0.14-1.00), though this finding was of borderline statistical significance (P = 0.05). There were no consistent differences in cardiac and kidney injury biomarker levels between treatment groups. LIMITATIONS: Modest sample size and number of events. CONCLUSIONS: In this pilot randomized controlled trial studying patients requiring initiation of HD, we found no difference in absolute SBP decline between those who received mannitol and those who received saline solution. However, there were fewer overall IDH events and a nominally lower risk for dialysis sessions being complicated by IDH in the mannitol group. A larger multicenter randomized controlled trial is warranted. FUNDING: Government funding to an author (Dr Mc Causland is supported by National Institute of Diabetes and Digestive and Kidney Diseases grant K23DK102511). TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study number NCT01520207.
Assuntos
Diuréticos Osmóticos/administração & dosagem , Hipotensão/etiologia , Hipotensão/prevenção & controle , Falência Renal Crônica/terapia , Manitol/administração & dosagem , Diálise Renal/efeitos adversos , Adulto , Idoso , Diuréticos Osmóticos/química , Método Duplo-Cego , Feminino , Humanos , Soluções Hipertônicas/administração & dosagem , Soluções Hipertônicas/química , Hipotensão/fisiopatologia , Falência Renal Crônica/fisiopatologia , Masculino , Manitol/química , Pessoa de Meia-Idade , Projetos Piloto , Diálise Renal/tendênciasRESUMO
RATIONALE: No medical intervention has been identified that decreases acute kidney injury and improves renal outcome at 1 year after cardiac surgery. OBJECTIVES: To determine whether administration of nitric oxide reduces the incidence of postoperative acute kidney injury and improves long-term kidney outcomes after multiple cardiac valve replacement requiring prolonged cardiopulmonary bypass. METHODS: Two hundred and forty-four patients undergoing elective, multiple valve replacement surgery, mostly due to rheumatic fever, were randomized to receive either nitric oxide (treatment) or nitrogen (control). Nitric oxide and nitrogen were administered via the gas exchanger during cardiopulmonary bypass and by inhalation for 24 hours postoperatively. MEASUREMENTS AND MAIN RESULTS: The primary outcome was as follows: oxidation of ferrous plasma oxyhemoglobin to ferric methemoglobin was associated with reduced postoperative acute kidney injury from 64% (control group) to 50% (nitric oxide group) (relative risk [RR], 0.78; 95% confidence interval [CI], 0.62-0.97; P = 0.014). Secondary outcomes were as follows: at 90 days, transition to stage 3 chronic kidney disease was reduced from 33% in the control group to 21% in the treatment group (RR, 0.64; 95% CI, 0.41-0.99; P = 0.024) and at 1 year, from 31% to 18% (RR, 0.59; 95% CI, 0.36-0.96; P = 0.017). Nitric oxide treatment reduced the overall major adverse kidney events at 30 days (RR, 0.40; 95% CI, 0.18-0.92; P = 0.016), 90 days (RR, 0.40; 95% CI, 0.17-0.92; P = 0.015), and 1 year (RR, 0.47; 95% CI, 0.20-1.10; P = 0.041). CONCLUSIONS: In patients undergoing multiple valve replacement and prolonged cardiopulmonary bypass, administration of nitric oxide decreased the incidence of acute kidney injury, transition to stage 3 chronic kidney disease, and major adverse kidney events at 30 days, 90 days, and 1 year. Clinical trial registered with ClinicalTrials.gov (NCT01802619).
Assuntos
Injúria Renal Aguda/prevenção & controle , Ponte Cardiopulmonar/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Óxido Nítrico/farmacologia , Complicações Pós-Operatórias/prevenção & controle , Insuficiência Renal Crônica/prevenção & controle , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Resultado do TratamentoRESUMO
The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.
Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Monitoramento de Medicamentos/métodos , Monitorização Imunológica/métodos , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico por imagem , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Antígeno B7-H1/imunologia , Caspase 3/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Esterases/química , Esterases/metabolismo , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/uso terapêutico , Polímeros/administração & dosagem , Polímeros/química , Polímeros/uso terapêutico , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacosRESUMO
Elevated plasma levels of the osteocyte-derived hormone fibroblast growth factor 23 (FGF23) have emerged as a powerful biomarker of cardiovascular disease and death in patients with CKD. Whether elevated urinary or plasma FGF23 levels are prospectively associated with AKI and death in critically ill patients is unknown. We therefore conducted a prospective cohort study of 350 critically ill patients admitted to intensive care units at an academic medical center to investigate whether higher urinary FGF23 levels associate with the composite end point of AKI or in-hospital mortality (AKI/death). We measured urinary FGF23 levels within 24 hours of admission to the intensive care unit. In a subcohort (n=131) we also measured plasma levels of FGF23, calcium, phosphate, parathyroid hormone, and vitamin D metabolites. Urinary and plasma FGF23 levels, but not other mineral metabolites, significantly associated with AKI/death. In multivariate analyses, patients in the highest compared with the lowest quartile of urinary FGF23 had a 3.9 greater odds (95% confidence interval, 1.6 to 9.5) of AKI/death. Higher urinary FGF23 levels also independently associated with greater hospital, 90-day, and 1-year mortality; longer length of stay; and several other important adverse outcomes. In conclusion, elevated FGF23 levels measured in the urine or plasma may be a promising novel biomarker of AKI, death, and other adverse outcomes in critically ill patients.
Assuntos
Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/urina , Fatores de Crescimento de Fibroblastos/urina , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Estado Terminal/mortalidade , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
BACKGROUND: Extracellular hemoglobin and cell-free heme are toxic breakdown products of hemolyzed erythrocytes. Mammals synthesize the scavenger proteins haptoglobin and hemopexin, which bind extracellular hemoglobin and heme, respectively. Transfusion of packed red blood cells is a lifesaving therapy for patients with hemorrhagic shock. Because erythrocytes undergo progressive deleterious morphological and biochemical changes during storage, transfusion of packed red blood cells that have been stored for prolonged intervals (SRBCs; stored for 35-40 days in humans or 14 days in mice) increases plasma levels of cell-free hemoglobin and heme. Therefore, in patients with hemorrhagic shock, perfusion-sensitive organs such as the kidneys are challenged not only by hypoperfusion but also by the high concentrations of plasma hemoglobin and heme that are associated with the transfusion of SRBCs. METHODS: To test whether treatment with exogenous human haptoglobin or hemopexin can ameliorate adverse effects of resuscitation with SRBCs after 2 hours of hemorrhagic shock, mice that received SRBCs were given a coinfusion of haptoglobin, hemopexin, or albumin. RESULTS: Treatment with haptoglobin or hemopexin but not albumin improved the survival rate and attenuated SRBC-induced inflammation. Treatment with haptoglobin retained free hemoglobin in the plasma and prevented SRBC-induced hemoglobinuria and kidney injury. In mice resuscitated with fresh packed red blood cells, treatment with haptoglobin, hemopexin, or albumin did not cause harmful effects. CONCLUSIONS: In mice, the adverse effects of transfusion with SRBCs after hemorrhagic shock are ameliorated by treatment with either haptoglobin or hemopexin. Haptoglobin infusion prevents kidney injury associated with high plasma hemoglobin concentrations after resuscitation with SRBCs. Treatment with the naturally occurring human plasma proteins haptoglobin or hemopexin may have beneficial effects in conditions of severe hemolysis after prolonged hypotension.
Assuntos
Eritrócitos/efeitos dos fármacos , Haptoglobinas/farmacologia , Hemopexina/farmacologia , Animais , Proteínas Sanguíneas/farmacologia , Eritrócitos/metabolismo , Haptoglobinas/administração & dosagem , Hemopexina/administração & dosagem , Humanos , Inflamação/tratamento farmacológico , Camundongos , Ressuscitação/métodos , Choque Hemorrágico/metabolismo , Reação TransfusionalRESUMO
Fibroblast growth factor 23 (FGF23) is elevated in chronic kidney disease and associated with increased mortality, but data on FGF23 in humans with acute kidney injury (AKI) are limited. Here we tested whether FGF23 levels rise early in the course of AKI following cardiac surgery and if higher postoperative FGF23 levels are independently associated with severe AKI and adverse outcomes. Plasma C-terminal FGF23 (cFGF23) levels were measured preoperatively, at the end of cardiopulmonary bypass, and on postoperative days 1 and 3 in 250 patients undergoing cardiac surgery. We also measured intact FGF23, parathyroid hormone, phosphate, and vitamin D metabolites in a subgroup of 18 patients with severe AKI and 18 matched non-AKI controls. Beginning at the end of cardiopulmonary bypass, cFGF23 levels were significantly and consistently higher in patients who developed AKI compared with those who did not. The early increase in cFGF23 predated changes in other mineral metabolites. The levels of intact FGF23 also increased in patients who developed severe AKI, but the magnitude was lower than cFGF23. In analyses adjusted for age, preoperative eGFR, and cardiopulmonary bypass time, higher cFGF23 levels at the end of cardiopulmonary bypass were significantly associated with greater risk of severe AKI and the need for renal replacement therapy or death. Thus, cFGF23 levels rise early in AKI following cardiac surgery and are independently associated with adverse postoperative outcomes.
Assuntos
Injúria Renal Aguda/sangue , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Fatores de Crescimento de Fibroblastos/sangue , Complicações Pós-Operatórias/sangue , Injúria Renal Aguda/etiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Hormônio Paratireóideo/sangue , Fosfatos/sangue , Estudos Prospectivos , Vitamina D/sangueRESUMO
UNLABELLED: Acute kidney injury in the context of acetaminophen (APAP; paracetamol)-induced liver injury is an important predictor of the requirement for urgent liver transplantation (LT) to avoid death. However, the prognostic biomarker used to report kidney dysfunction (serum creatinine concentration) has suboptimal sensitivity and specificity. Kidney injury molecule 1 (KIM-1) can be quantified in plasma as a sensitive and specific biomarker of kidney injury in both clinical and preclinical studies. Therefore, plasma KIM-1 has potential as a sensitive prognostic biomarker of patient outcome post-APAP overdose. In a cohort of APAP overdose patients (N = 74) with and without established liver injury, we quantified plasma KIM-1 by immunoassay on the first day of admission to a LT unit and assessed its diagnostic performance to predict outcome compared with serum creatinine concentration. Day 1 plasma KIM-1 was significantly elevated in patients that died or required LT, compared to spontaneous survivors (1,182 ± 251 vs. 214 ± 45 pg/mL; P < 0.005). Receiver operator characteristic analysis demonstrated the superiority of KIM-1 (area under the curve [AUC]: 0.87; 95% confidence interval [CI]: 0.78-0.95; 0.56 sensitivity at 0.95 specificity), compared with serum creatinine (AUC, 0.76; 95% CI: 0.64-0.87; 0.08 sensitivity at 0.95 specificity) and other current prognostic indicators, when measured on the first day of enrollment into the study. Furthermore, KIM-1 was found to be a statistically significant independent predictor of outcome at the 5% level (P < 0.0386) in a multivariable logistic regression model that considered all measured factors (pseudo-R^2 = 0.895). CONCLUSION: Early measurement of plasma KIM-1 represents a more sensitive predictor of patient outcome than serum creatinine concentration post-APAP overdose. With further development, plasma KIM-1 could significantly improve prognostic stratification.
Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/mortalidade , Transplante de Fígado/mortalidade , Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Acetaminofen/administração & dosagem , Adulto , Área Sob a Curva , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Estudos de Coortes , Creatinina/sangue , Feminino , Sobrevivência de Enxerto , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Transplante de Fígado/métodos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Curva ROC , Medição de Risco , Índice de Gravidade de Doença , Taxa de SobrevidaRESUMO
c-Met pathway is implicated in the resistance to anti-VEGF therapy in renal cell carcinoma (RCC). However, clinical translation of therapies targeting these pathways has been limited due to dose-limiting toxicities, feedback signaling, and low intratumoral drug accumulation. Here, we developed liposomes encapsulating a multi-receptor tyrosine kinase inhibitor (XL184) to explore the possibility of improving intratumoral concentration, enhancing antitumor efficacy and reducing toxicities. The liposomes showed increased cytotoxicity than XL184, and resulted in a sustained inhibition of phosphorylation of Met, AKT and MAPK pathways in RCC cells. In a RCC tumor xenograft model, the liposomes induced sustained inhibition of tumor growth as compared to XL184, consistent with higher inhibition of kinase signaling pathways. Biodistribution studies revealed higher accumulation of the liposomes in tumor, which translated into lower toxicities. This study shows the use of liposomes for effective inhibition of multi-kinase pathways, which can potentially emerge as a new treatment for RCC.
Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Lipossomos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Distribuição Tecidual , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologiaRESUMO
Nanoscale drug delivery vehicles have been harnessed extensively as carriers for cancer chemotherapeutics. However, traditional pharmaceutical approaches for nanoformulation have been a challenge with molecules that exhibit incompatible physicochemical properties, such as platinum-based chemotherapeutics. Here we propose a paradigm based on rational design of active molecules that facilitate supramolecular assembly in the nanoscale dimension. Using cisplatin as a template, we describe the synthesis of a unique platinum (II) tethered to a cholesterol backbone via a unique monocarboxylato and OâPt coordination environment that facilitates nanoparticle assembly with a fixed ratio of phosphatidylcholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]. The nanoparticles formed exhibit lower IC(50) values compared with carboplatin or cisplatin in vitro, and are active in cisplatin-resistant conditions. Additionally, the nanoparticles exhibit significantly enhanced in vivo antitumor efficacy in murine 4T1 breast cancer and in K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models with decreased systemic- and nephro-toxicity. Our results indicate that integrating rational drug design and supramolecular nanochemistry can emerge as a powerful strategy for drug development. Furthermore, given that platinum-based chemotherapeutics form the frontline therapy for a broad range of cancers, the increased efficacy and toxicity profile indicate the constructed nanostructure could translate into a next-generation platinum-based agent in the clinics.
Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Rim/efeitos dos fármacos , Nanopartículas/química , Platina/administração & dosagem , Animais , Apoptose , Carcinoma Pulmonar de Lewis , Linhagem Celular Tumoral , Sobrevivência Celular , Colesterol/química , Cisplatino/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Concentração Inibidora 50 , Rim/metabolismo , Camundongos , Modelos Químicos , Nanotecnologia/métodos , Ácido Succínico/químicaRESUMO
Currently, no blood biomarker that specifically indicates injury to the proximal tubule of the kidney has been identified. Kidney injury molecule-1 (KIM-1) is highly upregulated in proximal tubular cells following kidney injury. The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury. We report that shed KIM-1 also serves as a blood biomarker of kidney injury. Sensitive assays to measure plasma and serum KIM-1 in mice, rats, and humans were developed and validated in the current study. Plasma KIM-1 levels increased with increasing periods of ischemia (10, 20, or 30 minutes) in mice, as early as 3 hours after reperfusion; after unilateral ureteral obstruction (day 7) in mice; and after gentamicin treatment (50 or 200 mg/kg for 10 days) in rats. In humans, plasma KIM-1 levels were higher in patients with AKI than in healthy controls or post-cardiac surgery patients without AKI (area under the curve, 0.96). In patients undergoing cardiopulmonary bypass, plasma KIM-1 levels increased within 2 days after surgery only in patients who developed AKI (P<0.01). Blood KIM-1 levels were also elevated in patients with CKD of varous etiologies. In a cohort of patients with type 1 diabetes and proteinuria, serum KIM-1 level at baseline strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-up, after adjustment for baseline urinary albumin-to-creatinine ratio, eGFR, and Hb1Ac. These results identify KIM-1 as a blood biomarker that specifically reflects acute and chronic kidney injury.
Assuntos
Moléculas de Adesão Celular/sangue , Glicoproteínas de Membrana/sangue , Proteínas de Membrana/sangue , Receptores Virais/sangue , Insuficiência Renal/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/sangue , Feminino , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Adulto JovemRESUMO
BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD: In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS: Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS: Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
RESUMO
Autophagy is a lysosomal protein degradation system that eliminates cytoplasmic components such as protein aggregates, damaged organelles, and even invading pathogens. Autophagy is an evolutionarily conserved homoeostatic strategy for cell survival in stressful conditions and has been linked to a variety of biological processes and disorders. It is vital for the homeostasis and survival of renal cells such as podocytes and tubular epithelial cells, as well as immune cells in the healthy kidney. Autophagy activation protects renal cells under stressed conditions, whereas autophagy deficiency increases the vulnerability of the kidney to injury, resulting in several aberrant processes that ultimately lead to renal failure. Renal fibrosis is a condition that, if chronic, will progress to end-stage kidney disease, which at this point is incurable. Chronic Kidney Disease (CKD) is linked to significant alterations in cell signaling such as the activation of the pleiotropic cytokine transforming growth factor-ß1 (TGF-ß1). While the expression of TGF-ß1 can promote fibrogenesis, it can also activate autophagy, which suppresses renal tubulointerstitial fibrosis. Autophagy has a complex variety of impacts depending on the context, cell types, and pathological circumstances, and can be profibrotic or antifibrotic. Induction of autophagy in tubular cells, particularly in the proximal tubular epithelial cells (PTECs) protects cells against stresses such as proteinuria-induced apoptosis and ischemia-induced acute kidney injury (AKI), whereas the loss of autophagy in renal cells scores a significant increase in sensitivity to several renal diseases. In this review, we discuss new findings that emphasize the various functions of TGF-ß1 in producing not just renal fibrosis but also the beneficial TGF-ß1 signaling mechanisms in autophagy.
Assuntos
Insuficiência Renal Crônica , Fator de Crescimento Transformador beta1 , Humanos , Autofagia/fisiologia , Fibrose , Rim/patologia , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Rationale & Objective: Biomarkers of kidney disease progression have been identified in individuals with diabetes and underlying chronic kidney disease (CKD). Whether or not these markers are associated with the development of CKD in a general population without diabetes or CKD is not well established. Study Design: Prospective observational cohort. Setting & Participants: In the Atherosclerosis Risk in Communities) study, 948 participants were studied. Exposures: The baseline plasma biomarkers of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), soluble urokinase plasminogen activator receptor (suPAR), tumor necrosis factor receptor 1 (TNFR-1), tumor necrosis factor receptor 2 (TNFR-2), and human cartilage glycoprotein-39 (YKL-40) measured in 1996-1998. Outcome: Incident CKD after 15 years of follow-up defined as ≥40% estimated glomerular filtration rate decline to <60 mL/min/1.73 m2 or dialysis dependence through United States Renal Data System linkage. Analytical Approach: Logistic regression and C statistics. Results: There were 523 cases of incident CKD. Compared with a random sample of 425 controls, there were greater odds of incident CKD per 2-fold higher concentration of KIM-1 (OR, 1.49; 95% CI, 1.25-1.78), suPAR (OR, 2.57; 95% CI, 1.74-3.84), TNFR-1 (OR, 2.20; 95% CI, 1.58-3.09), TNFR-2 (OR, 2.03; 95% CI, 1.37-3.04). After adjustment for all biomarkers, KIM-1 (OR, 1.42; 95% CI, 1.19-1.71), and suPAR (OR, 1.86; 95% CI, 1.18-2.92) remained associated with incident CKD. Compared with traditional risk factors, the addition of all 6 biomarkers improved the C statistic from 0.695-0.731 (P < 0.01) and using the observed risk of 12% for incident CKD, the predicted risk gradient changed from 5%-40% (for the 1st-5th quintile) to 4%-44%. Limitations: Biomarkers and creatinine were measured at one time point. Conclusions: Higher levels of KIM-1, suPAR, TNFR-1, and TNFR-2 were associated with higher odds of incident CKD among individuals without diabetes. Plain-Language Summary: For people with diabetes or kidney disease, several biomarkers have been shown to be associated with worsening kidney disease. Whether these biomarkers have prognostic significance in people without diabetes or kidney disease is less studied. Using the Atherosclerosis Risk in Communities study, we followed individuals without diabetes or kidney disease for an average of 15 years after biomarker measurement to see if these biomarkers were associated with the development of kidney disease. We found that elevated levels of KIM-1, suPAR, TNFR-1, and TNFR-2 were associated with the development of kidney disease. These biomarkers may help identify individuals who would benefit from interventions to prevent the development of kidney disease.
RESUMO
Chronic kidney disease (CKD) remains one of the leading causes of death in the developed world, and acute kidney injury (AKI) is now recognized as a major risk factor in its development. Understanding the factors leading to CKD after acute injury are limited by current animal models of AKI, which concurrently target various kidney cell types including epithelial, endothelial, and inflammatory cells. Here, we developed a mouse model of kidney injury using the Six2-Cre-LoxP technology to selectively activate expression of the simian diphtheria toxin (DT) receptor in renal epithelia derived from the metanephric mesenchyme. By adjusting the timing and dose of DT, a highly selective model of tubular injury was created to define the acute and chronic consequences of isolated epithelial injury. The DT-induced sublethal tubular epithelial injury was confined to the S1 and S2 segments of the proximal tubule rather than being widespread in the metanephric mesenchyme-derived epithelial lineage. Acute injury was promptly followed by inflammatory cell infiltration and robust tubular cell proliferation, leading to complete recovery after a single toxin insult. In striking contrast, three insults to renal epithelial cells at 1-week intervals resulted in maladaptive repair with interstitial capillary loss, fibrosis, and glomerulosclerosis, which was highly correlated with the degree of interstitial fibrosis. Thus, selective epithelial injury can drive the formation of interstitial fibrosis, capillary rarefaction, and potentially glomerulosclerosis, substantiating a direct role for damaged tubule epithelium in the pathogenesis of CKD.
Assuntos
Injúria Renal Aguda/complicações , Células Epiteliais/patologia , Glomerulonefrite/etiologia , Túbulos Renais Proximais/patologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Fibrose , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regeneração , Fatores de TempoRESUMO
Signal transduction and activator of transcription 3 (STAT3) is a key transcription factor implicated in the pathogenesis of kidney fibrosis. Although Stat3 deletion in tubular epithelial cells is known to protect mice from fibrosis, vFoxd1 cells remains unclear. Using Foxd1-mediated Stat3 knockout mice, CRISPR, and inhibitors of STAT3, we investigate its function. STAT3 is phosphorylated in tubular epithelial cells in acute kidney injury, whereas it is expanded to interstitial cells in fibrosis in mice and humans. Foxd1-mediated deletion of Stat3 protects mice from folic-acid- and aristolochic-acid-induced kidney fibrosis. Mechanistically, STAT3 upregulates the inflammation and differentiates pericytes into myofibroblasts. STAT3 activation increases migration and profibrotic signaling in genome-edited, pericyte-like cells. Conversely, blocking Stat3 inhibits detachment, migration, and profibrotic signaling. Furthermore, STAT3 binds to the Collagen1a1 promoter in mouse kidneys and cells. Together, our study identifies a previously unknown function of STAT3 that promotes kidney fibrosis and has therapeutic value in fibrosis.
Assuntos
Injúria Renal Aguda , Pericitos , Fator de Transcrição STAT3/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Transdiferenciação Celular , Fibrose , Fatores de Transcrição Forkhead/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pericitos/metabolismo , Transdução de Sinais/fisiologiaRESUMO
To better understand the diagnostic and predictive performance of urinary biomarkers of kidney injury, we evaluated γ-glutamyltranspeptidase (GGT), alkaline phosphatase (AP), neutrophil-gelatinase-associated lipocalin (NGAL), cystatin C (CysC), kidney injury molecule-1 (KIM-1), and interleukin-18 (IL-18) in a prospective observational study of 529 patients in 2 general intensive care units (ICUs). Comparisons were made using the area under the receiver operator characteristic curve (AUC) for diagnosis or prediction of acute kidney injury (AKI), dialysis, or death, and reassessed after patient stratification by baseline renal function (estimated glomerular filtration rate, eGFR) and time after renal insult. On ICU entry, no biomarker had an AUC above 0.7 in the diagnosis or prediction of AKI. Several biomarkers (NGAL, CysC, and IL-18) predicted dialysis (AUC over 0.7), and all except KIM-1 predicted death at 7 days (AUC between 0.61 and 0.69). Performance was improved by stratification for eGFR or time or both. With eGFR <60 ml/min, CysC and KIM-1 had AUCs of 0.69 and 0.73, respectively, within 6 h of injury, and between 12 and 36 h, CysC (0.88), NGAL (0.85), and IL-18 (0.94) had utility. With eGFR >60 ml/min, GGT (0.73), CysC (0.68), and NGAL (0.68) had the highest AUCs within 6 h of injury, and between 6 and 12 h, all AUCs except AP were between 0.68 and 0.78. Beyond 12 h, NGAL (0.71) and KIM-1 (0.66) performed best. Thus, the duration of injury and baseline renal function should be considered in evaluating biomarker performance to diagnose AKI.
Assuntos
Injúria Renal Aguda/diagnóstico , Biomarcadores/urina , Taxa de Filtração Glomerular , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/urina , Proteínas de Fase Aguda/urina , Adulto , Idoso , Área Sob a Curva , Estado Terminal , Feminino , Humanos , Interleucina-18/urina , Lipocalina-2 , Lipocalinas/urina , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/urina , Diálise Renal , Fatores de Tempo , gama-Glutamiltransferase/urinaRESUMO
RATIONALE & OBJECTIVE: Biomarker studies are important for generating mechanistic insight and providing clinically useful predictors of chronic kidney disease (CKD) progression. However, variability across studies can often muddy the evidence waters. Here we evaluated real-world variability in biomarker studies using two published studies, independently conducted, of the novel plasma marker soluble urokinase-type plasminogen activator receptor (suPAR) for predicting CKD progression in children with CKD. STUDY DESIGN: A comparison of 2 prospective cohort studies. SETTING & PARTICIPANTS: 541 children from the Chronic Kidney Disease in Children (CKiD) study, median age 12 years, median glomerular filtration rate (GFR) of 54 mL/min/1.73m2. OUTCOME: The first occurrence of either a 50% decline in GFR from baseline or incident end-stage kidney disease. ANALYTICAL APPROACH: The suPAR plasma marker was measured using the Quantikine ELISA immunoassay in the first study and Meso Scale Discovery (MSD) platform in the second. The analytical approaches varied. We used suPAR data from the 2 assays and mimicked each analytical approach in an overlapping subset. RESULTS: We found that switching assays had the greatest impact on inferences, resulting in a 38% to 66% change in the magnitude of the effect estimates. Covariate and modeling choices resulted in an additional 8% to 40% variability in the effect estimate. The cumulative variability led to different inferences despite using a similar sample of CKiD participants and addressing the same question. LIMITATIONS: The estimated variability does not represent optimal repeatability but instead illustrates real-world variability that may be present in the CKD biomarker literature. CONCLUSIONS: Our results highlight the importance of validation, avoiding conclusions based on P value thresholds, and providing comparable metrics. Further transparency of data and equal weighting of negative and positive findings in explorations of novel biomarkers will allow investigators to more quickly weed out less promising biomarkers.