Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2203628119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201541

RESUMO

Heart failure (HF) is a leading cause of death and repeated hospitalizations and often involves cardiac mitochondrial dysfunction. However, the underlying mechanisms largely remain elusive. Here, using a mouse model in which myocardial infarction (MI) was induced by coronary artery ligation, we show the metabolic basis of mitochondrial dysfunction in chronic HF. Four weeks after ligation, MI mice showed a significant decrease in myocardial succinyl-CoA levels, and this decrease impaired the mitochondrial oxidative phosphorylation (OXPHOS) capacity. Heme synthesis and ketolysis, and protein levels of several enzymes consuming succinyl-CoA in these events, were increased in MI mice, while enzymes synthesizing succinyl-CoA from α-ketoglutarate and glutamate were also increased. Furthermore, the ADP-specific subunit of succinyl-CoA synthase was reduced, while its GDP-specific subunit was almost unchanged. Administration of 5-aminolevulinic acid, an intermediate in the pathway from succinyl-CoA to heme synthesis, appreciably restored succinyl-CoA levels and OXPHOS capacity and prevented HF progression in MI mice. Previous reports also suggested the presence of succinyl-CoA metabolism abnormalities in cardiac muscles of HF patients. Our results identified that changes in succinyl-CoA usage in different metabolisms of the mitochondrial energy production system is characteristic to chronic HF, and although similar alterations are known to occur in healthy conditions, such as during strenuous exercise, they may often occur irreversibly in chronic HF leading to a decrease in succinyl-CoA. Consequently, nutritional interventions compensating the succinyl-CoA consumption are expected to be promising strategies to treat HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Acil Coenzima A , Difosfato de Adenosina/metabolismo , Ácido Aminolevulínico , Metabolismo Energético , Glutamatos/metabolismo , Insuficiência Cardíaca/metabolismo , Heme/metabolismo , Humanos , Ácidos Cetoglutáricos , Fosforilação Oxidativa
2.
Cell Commun Signal ; 21(1): 106, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158894

RESUMO

Mutations in the KRAS gene and overexpression of protein products of the MYC and ARF6 genes occur frequently in cancer. Here, the inseparable relationships and cooperation of the protein products of these three genes in cancer malignancy and immune evasion are discussed. mRNAs encoded by these genes share the common feature of a G-quadruplex structure, which directs them to be robustly expressed when cellular energy production is increased. These three proteins are also functionally inseparable from each other, as follows. 1) KRAS induces MYC gene expression, and may also promote eIF4A-dependent MYC and ARF6 mRNA translation, 2) MYC induces the expression of genes involved in mitochondrial biogenesis and oxidative phosphorylation, and 3) ARF6 protects mitochondria from oxidative injury. ARF6 may moreover promote cancer invasion and metastasis, and also acidosis and immune checkpoint. Therefore, the inseparable relationships and cooperation of KRAS, MYC, and ARF6 appear to result in the activation of mitochondria and the driving of ARF6-based malignancy and immune evasion. Such adverse associations are frequent in pancreatic cancer, and appear to be further enhanced by TP53 mutations. Video Abstract.


Assuntos
Fator 6 de Ribosilação do ADP , Evasão da Resposta Imune , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Mitocôndrias , Mutação , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fator 6 de Ribosilação do ADP/genética
3.
Am J Physiol Heart Circ Physiol ; 322(2): H117-H128, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860594

RESUMO

Various skeletal muscle abnormalities are known to occur in heart failure (HF) and are closely associated with exercise intolerance. Particularly, abnormal energy metabolism caused by mitochondrial dysfunction in skeletal muscle is a cause of decreased endurance exercise capacity. However, to date, no specific drug treatment has been established for the skeletal muscle abnormalities and exercise intolerance occurring in patients with HF. Sodium-glucose transporter 2 (SGLT2) inhibitors promote glucose excretion by suppressing glucose reabsorption in the renal tubules, which has a hypoglycemic effect independent of insulin secretion. Recently, large clinical trials have demonstrated that treatment with SGLT2 inhibitors suppresses cardiovascular events in patients who have HF with systolic dysfunction. Mechanisms of the therapeutic effects of SGLT2 inhibitors for HF have been suggested to be diuretic, suppression of neurohumoral factor activation, renal protection, and improvement of myocardial metabolism, but this has not been clarified to date. SGLT2 inhibitors are known to increase blood ketone bodies. This suggests that they may improve the abnormal skeletal muscle metabolism in HF, that is, improve fatty acid metabolism, suppress glycolysis, and use ketone bodies in mitochondrial energy production. Ultimately, they may improve aerobic metabolism in skeletal muscle, suppress anaerobic metabolism, and improve aerobic exercise capacity at the level of the anaerobic threshold. The potential actions of such SGLT2 inhibitors explain their effectiveness in HF and may be candidates for new drug treatments aimed at improving exercise intolerance. In this review, we outlined the effects of SGLT2 inhibitors on skeletal muscle metabolism, with a particular focus on ketone metabolism.


Assuntos
Insuficiência Cardíaca/metabolismo , Corpos Cetônicos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
4.
Proc Natl Acad Sci U S A ; 116(35): 17450-17459, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399545

RESUMO

Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6-AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5'-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5'-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor ß (PDGFRß) and enzymes of the mevalonate pathway (MVP). The ARF6-AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Antígeno B7-H1/metabolismo , Evasão da Resposta Imune/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Fator 6 de Ribosilação do ADP , Sítios de Ligação , Biomarcadores Tumorais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Modelos Moleculares , Mutação , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Ligação Proteica , RNA Mensageiro/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 582: 93-99, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695756

RESUMO

The genetic manipulation of cells followed by their selection is indispensable for cell biological research. Although antibiotics-resistant genes are commonly used as selection markers, optimization of the condition for each selective agent is required. Here we utilized split-inteins and the drug-selectable marker puromycin N-acetyltransferase (PAC) to develop a system that enables the selection of cells simultaneously or sequentially transfected with multiple genetic constructs, using only puromycin. The active PAC enzyme was reconstituted by intein-mediated trans-splicing at several inherent or engineered serine/cysteine residues. Multiple splitting and reconstitution of active PAC was readily achieved by selecting optimum division sites based on the cellular tolerance to various puromycin concentrations. To achieve the stepwise selection method, PAC-intein fragments were transduced into cells using a virus-like particle (VLP) composed of HIV-1 gag-pol and VSV-G. The PAC-intein-VLP successfully conferred sufficient PAC activity for puromycin selection, which was quickly diminished in the absence of the VLP. Our findings demonstrate a versatile strategy for establishing markers for all-at-once or stepwise selection of multiple genetic manipulations, which will be useful in many fields of biology.


Assuntos
Acetiltransferases/genética , Engenharia Celular/métodos , Proteínas de Fusão gag-pol/genética , Inteínas/genética , Glicoproteínas de Membrana/genética , Seleção Genética , Proteínas do Envelope Viral/genética , Acetiltransferases/metabolismo , Partículas Artificiais Semelhantes a Vírus/química , Partículas Artificiais Semelhantes a Vírus/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas de Fusão gag-pol/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Puromicina/farmacologia , Transfecção/métodos , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteína Vermelha Fluorescente
6.
Cell Commun Signal ; 19(1): 54, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001163

RESUMO

Many clinical trials are being conducted to clarify effective combinations of various drugs for immune checkpoint blockade (ICB) therapy. However, although extensive studies from multiple aspects have been conducted regarding treatments for pancreatic ductal adenocarcinoma (PDAC), there are still no effective ICB-based therapies or biomarkers for this cancer type. A series of our studies have identified that the small GTPase ARF6 and its downstream effector AMAP1 (also called ASAP1/DDEF1) are often overexpressed in different cancers, including PDAC, and closely correlate with poor patient survival. Mechanistically, the ARF6-AMAP1 pathway drives cancer cell invasion and immune evasion, via upregulating ß1-integrins and PD-L1, and downregulating E-cadherin, upon ARF6 activation by external ligands. Moreover, the ARF6-AMAP1 pathway enhances the fibrosis caused by PDAC, which is another barrier for ICB therapies. KRAS mutations are prevalent in PDACs. We have shown previously that oncogenic KRAS mutations are the major cause of the aberrant overexpression of ARF6 and AMAP1, in which KRAS signaling enhances eukaryotic initiation factor 4A (eIF4A)-dependent ARF6 mRNA translation and eIF4E-dependent AMAP1 mRNA translation. MYC overexpression is also a key pathway in driving cancer malignancy. MYC mRNA is also known to be under the control of eIF4A, and the eIF4A inhibitor silvestrol suppresses MYC and ARF6 expression. Using a KPC mouse model of human PDAC (LSL-Kras(G12D/+); LSL-Trp53(R172H/+)); Pdx-1-Cre), we here demonstrate that inhibition of the ARF6-AMAP1 pathway by shRNAs in cancer cells results in therapeutic synergy with an anti-PD-1 antibody in vivo; and furthermore, that silvestrol improves the efficacy of anti-PD-1 therapy, whereas silvestrol on its own promotes tumor growth in vivo. ARF6 and MYC are both essential for normal cell functions. We demonstrate that silvestrol substantially mitigates the overexpression of ARF6 and MYC in KRAS-mutated cells, whereas the suppression is moderate in KRAS-intact cells. We propose that targeting eIF4A, as well as mutant KRAS, provides novel methods to improve the efficacy of anti-PD-1 and associated ICB therapies against PDACs, in which ARF6 and AMAP1 overexpression, as well as KRAS mutations of cancer cells are biomarkers to identify patients with drug-susceptible disease. The same may be applicable to other cancers with KRAS mutations. Video abstract.


Assuntos
Fator 6 de Ribosilação do ADP/metabolismo , Antígeno B7-H1/imunologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Imunoterapia , Mutação/genética , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Humanos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia
7.
Cell Commun Signal ; 18(1): 101, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580737

RESUMO

BACKGROUND: Not merely the onset of immune evasion, but other factors, such as acidosis and fibrosis, are also major barriers in cancer therapeutics. Dense fibrosis is a hallmark of pancreatic ductal carcinoma (PDAC), in which hyperactivation of focal adhesion kinase (FAK) in tumor cells was shown to be crucial. Double mutations of KRAS/ TP53 are characteristic to PDAC. We previously showed that high protein expression of ARF6 and its downstream effector AMAP1, as well as processes involved in the ARF6 activation by cell surface tyrosine kinase receptors, are major targets of the KRAS/TP53 mutations to promote PDAC invasion, metastasis, and immune evasion. This notion was recaptured by KPC mouse model of human PDAC (LSL-Kras(G12D/+); LSL-Trp53(R172H/+)); Pdx-1-Cre). Mechanistically, the ARF6-AMAP1 pathway is primarily involved in cellular dynamics of PD-L1, ß1-integrins, and E-cadherin; and hence modulates cell-adhesion properties when ARF6 is activated. Here, with an aim to understand whether the ARF6-AMAP1 pathway is critically involved in the elevated levels of PD-L1 and fibrosis of PDAC, we analyzed relationship between AMAP1 and these malignant phenotypes. Moreover, because the ARF6 pathway may closely be related to focal adhesion dynamics and hence to FAK, we also investigated whether AMAP1 employs FAK in fibrosis. METHODS: Clinical specimens, as well as KPC cells/tumors and their shAMAP1 or shFAK derivatives were analyzed. RESULTS: Elevated levels of PD-L1 and fibrosis correlated with poor outcome of our patient cohort, to be consistent with previous reports; in which high AMAP1 expression statistically correlated with the elevated PD-L1 and fibrosis. To be consistent, silencing of AMAP1 (shAMAP1) in KPC cells resulted in reduced PD-L1 expression and fibrosis in their tumors. On the other hand, shAMAP1 only slightly affected FAK activation in KPC cells, and phosphorylated FAK did not correlate with enhanced fibrosis or with poor outcome of our patients. CONCLUSIONS: Together with our previous data, our results collectively indicated that the ARF6-AMAP1 pathway, empowered by the KRAS/TP53 mutations, is closely associated with elevated PD-L1 expression and fibrosis of human PDACs, to be recaptured in the KPC mouse model. The ARF6 pathway may promote fibrosis independent of FAK. Video abstract.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator 6 de Ribosilação do ADP , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade
8.
Biochem Biophys Res Commun ; 513(3): 708-713, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987827

RESUMO

Neutrophils rapidly migrate to infection sites after the recognition of invaders. During chemotaxis, neutrophils require energy supplied by mitochondria oxidative phosphorylation (OXPHOS), whereas neutrophils rely heavily on glycolysis under normal conditions. Mitochondrial OXPHOS correlates with mitochondrial morphology. Here, we examined the mitochondrial morphology of neutrophil-like differentiated HL-60 cells after chemoattractant N-formyl-Met-Leu-Phe (fMLP) stimulation. We found that mitochondrial morphology changes to a tubular form after fMLP stimulation. Mitochondrial OXPHOS activity and mitochondrial complex II significantly increased after fMLP stimulation. On the other hand, the silencing of mitochondrial fusion protein mitofusin 2 (MFN2) suppresses mitochondrial morphological changes. Furthermore, MFN2 silencing suppressed OXPHOS activation and chemotaxis after fMLP stimulation. These results suggest that MFN2 is involved in chemotaxis of differentiated HL-60 cells depending on mitochondria.


Assuntos
Quimiotaxia de Leucócito , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neutrófilos/citologia , Células HL-60 , Humanos , Mitocôndrias/ultraestrutura , Neutrófilos/metabolismo , Fosforilação Oxidativa
9.
Cell Commun Signal ; 17(1): 128, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619261

RESUMO

BACKGROUND: Linoleic acid is the major fatty acid moiety of cardiolipin, which is central to the assembly of components involved in mitochondrial oxidative phosphorylation (OXPHOS). Although linoleic acid is an essential nutrient, its excess intake is harmful to health. On the other hand, linoleic acid has been shown to prevent the reduction in cardiolipin content and to improve mitochondrial function in aged rats with spontaneous hypertensive heart failure (HF). In this study, we found that lower dietary intake of linoleic acid in HF patients statistically correlates with greater severity of HF, and we investigated the mechanisms therein involved. METHODS: HF patients, who were classified as New York Heart Association (NYHA) functional class I (n = 45), II (n = 93), and III (n = 15), were analyzed regarding their dietary intakes of different fatty acids during the one month prior to the study. Then, using a mouse model of HF, we confirmed reduced cardiolipin levels in their cardiac myocytes, and then analyzed the mechanisms by which dietary supplementation of linoleic acid improves cardiac malfunction of mitochondria. RESULTS: The dietary intake of linoleic acid was significantly lower in NYHA III patients, as compared to NYHA II patients. In HF model mice, both CI-based and CII-based OXPHOS activities were affected together with reduced cardiolipin levels. Silencing of CRLS1, which encodes cardiolipin synthetase, in cultured cardiomyocytes phenocopied these events. Feeding HF mice with linoleic acid improved both CI-based and CII-based respiration as well as left ventricular function, together with an increase in cardiolipin levels. However, although assembly of the respirasome (i.e., CI/CIII2/CIV complex), as well as assembly of CII subunits and the CIII2/CIV complex statistically correlated with cardiolipin levels in cultured cardiomyocytes, respirasome assembly was not notably restored by dietary linoleic acid in HF mice. Therefore, although linoleic acid may significantly improve both CI-based and CII-based respiration of cardiomyocytes, respirasomes impaired by HF were not easily repaired by the dietary intake of linoleic acid. CONCLUSIONS: Dietary supplement of linoleic acid is beneficial for improving cardiac malfunction in HF, but is unable to completely cure HF.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/metabolismo , Ácido Linoleico/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Idoso , Animais , Cardiolipinas/metabolismo , Complexo II de Transporte de Elétrons/química , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Ácido Linoleico/metabolismo , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Subunidades Proteicas/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 315(2): H262-H272, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631373

RESUMO

The molecular and electrophysiological mechanisms of acute ischemic ventricular arrhythmias in hypertrophied hearts are not well known. We hypothesized that small-conductance Ca2+-activated K+ (SK) channels are activated during hypoxia via the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent pathway. We used normotensive Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) as a model of cardiac hypertrophy. The inhibitory effects of SK channels and ATP-sensitive K+ channels on electrophysiological changes and genesis of arrhythmias during simulated global hypoxia (GH) were evaluated. Hypoxia-induced abbreviation of action potential duration (APD) occurred earlier in ventricles from SHRs versus. WKY rats. Apamin, a SK channel blocker, prevented this abbreviation in SHRs in both the early and delayed phase of GH, whereas in WKY rats only the delayed phase was prevented. In contrast, SHRs were less sensitive to glibenclamide, a ATP-sensitive K+ channel blocker, which inhibited the APD abbreviation in both phases of GH in WKY rats. SK channel blockers (apamin and UCL-1684) reduced the incidence of hypoxia-induced sustained ventricular arrhythmias in SHRs but not in WKY rats. Among three SK channel isoforms, SK2 channels were directly coimmunoprecipitated with CaMKII phosphorylated at Thr286 (p-CaMKII). We conclude that activation of SK channels leads to the APD abbreviation and sustained ventricular arrhythmias during simulated hypoxia, especially in hypertrophied hearts. This mechanism may result from p-CaMKII-bound SK2 channels and reveal new molecular targets to prevent lethal ventricular arrhythmias during acute hypoxia in cardiac hypertrophy. NEW & NOTEWORTHY We now show a new pathophysiological role of small-conductance Ca2+-activated K+ channels, which shorten the action potential duration and induce ventricular arrhythmias during hypoxia. We also demonstrate that small-conductance Ca2+-activated K+ channels interact with phosphorylated Ca2+/calmodulin-dependent protein kinase II at Thr286 in hypertrophied hearts.


Assuntos
Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Isquemia Miocárdica/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais de Ação , Animais , Apamina/farmacologia , Arritmias Cardíacas/fisiopatologia , Cardiomegalia/fisiopatologia , Glibureto/farmacologia , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Masculino , Isquemia Miocárdica/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores
11.
Cell Commun Signal ; 16(1): 94, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30509302

RESUMO

BACKGROUND: TP53 mutations in cancer cells often evoke cell invasiveness, whereas fibroblasts show invasiveness in the presence of intact TP53. AMAP1 (also called DDEF1 or ASAP1) is a downstream effector of ARF6 and is essential for the ARF6-driven cell-invasive phenotype. We found that AMAP1 levels are under the control of p53 (TP53 gene product) in epithelial cells but not in fibroblasts, and here addressed that molecular basis of the epithelial-specific function of p53 in suppressing invasiveness via targeting AMAP1. METHODS: Using MDA-MB-231 cells expressing wild-type and p53 mutants, we identified miRNAs in which their expression is controlled by normal-p53. Among them, we identified miRNAs that target AMAP1 mRNA, and analyzed their expression levels and epigenetic statuses in epithelial cells and nonepithelial cells. RESULTS: We found that normal-p53 suppresses AMAP1 mRNA in cancer cells and normal epithelial cells, and that more than 30 miRNAs are induced by normal-p53. Among them, miR-96 and miR-182 were found to target the 3'-untranslated region of AMAP1 mRNA. Fibroblasts did not express these miRNAs at detectable levels. The ENCODE dataset demonstrated that the promoter region of the miR-183-96-182 cistron is enriched with H3K27 acetylation in epithelial cells, whereas this locus is enriched with H3K27 trimethylation in fibroblasts and other non-epithelial cells. miRNAs, such as miR-423, which are under the control of p53 but not associated with AMAP1 mRNA, demonstrated similar histone modifications at their gene loci in epithelial cells and fibroblasts, and were expressed in these cells. CONCLUSION: Histone modifications of certain miRNA loci, such as the miR-183-96-182 cistron, are different between epithelial cells and non-epithelial cells. Such epithelial-specific miRNA regulation appears to provide the molecular basis for the epithelial-specific function of p53 in suppressing ARF6-driven invasiveness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células Epiteliais/metabolismo , Loci Gênicos/genética , Código das Histonas/genética , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Sequência de Bases , Linhagem Celular Tumoral , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Invasividade Neoplásica , RNA Mensageiro/genética
12.
Cell Commun Signal ; 16(1): 1, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29329590

RESUMO

BACKGROUND: The small GTPase Arf6 and its downstream effector AMAP1 (also called ASAP1/DDEF1) constitute a signaling pathway promoting cell invasion, in which AMAP1 interacts with several different proteins, including PRKD2, EPB41L5, paxillin, and cortactin. Components of this pathway are often overexpressed in human breast cancer cells, to be correlated with poor prognosis of the patients, whereas overexpression of the Arf6 pathway did not correlate with the four main molecular classes of human breast tumors. In this pathway, receptor tyrosine kinases, including EGFR and Her2, activate Arf6 via GEP100. MMTV-PyMT mice and MMTV-Neu mice are well-established models of human breast cancer, and exhibit the early dissemination and the lung metastasis, by utilizing protein tyrosine phosphorylation for oncogenesis. PyMT-tumors and Neu-tumors are known to have overlapping gene expression profiles, which primarily correspond to the luminal B-type of human mammary tumors, although they differ in the time necessary for tumor onset and metastasis. Given the common usage of protein tyrosine phosphorylation, as well as the frequent use of these animal models for studying breast cancer at the molecular level, we here investigated whether mammary tumors in these mouse models utilize the Arf6-based pathway for invasion. METHODS: Expression levels of Arf6, AMAP1, and GEP100 were analyzed in PyMT-tumors and Neu-tumors by western blotting. Expression of Arf6 and AMAP1 was also analyzed by immunohistochemistry. The involvement of AMAP1 in invasion, and the possible correlation of its high expression levels with cancer mesenchymal properties were also investigated. RESULTS: We found that PyMT-tumors, but not Neu-tumors, frequently overexpress AMAP1 and use it for invasion, whereas both types of tumors expressed Arf6 and GEP100 at different levels. High levels of the AMAP1 expression among PyMT-tumor cells were frequently correlated with loss of the epithelial marker CK8 and also with expression of the mesenchymal marker vimentin both at the primary sites and at sites of the lung metastases. CONCLUSIONS: PyMT-tumors appear to frequently utilize the Arf6-based invasive machinery, whereas Neu-tumors do not. Our results suggest that MMTV-PyMT mice, rather than MMTV-Neu mice, are useful to study the Arf6-based mammary tumor malignancies, as a representative model of human breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Neoplasias da Mama/patologia , Vírus do Tumor Mamário do Camundongo/genética , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Neoplasias da Mama/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Invasividade Neoplásica , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo
13.
Cell Commun Signal ; 15(1): 36, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969640

RESUMO

BACKGROUND: The small GTPase ARF1 mediates membrane trafficking mostly from the Golgi, and is essential for the G protein-coupled receptor (GPCR)-mediated chemotaxis of neutrophils. In this process, ARF1 is activated by the guanine nucleotide exchanger GBF1, and is inactivated by the GTPase-activating protein GIT2. Neutrophils generate the Gßγ-PAK1-αPIX-GIT2 linear complex during GPCR-induced chemotaxis, in which αPIX activates RAC1/CDC42, which then employs PAK1. However, it has remained unclear as to why GIT2 is included in this complex. RESULTS: We investigated the association between ARF1 and RAC1/CDC42 during the fMLP-stimulated chemotaxis of HL60 cells. We found that the silencing of GBF1 significantly impaired the recruitment of RAC1 to the leading edges, but not PAK1, αPIX, RAC2, or CDC42. A significant population of RAC1 colocalized with ARF1 at the leading edges in stimulated cells, whereas fMLP activated both ARF1 and ARF5. Consistently, the silencing of ARF1, but not ARF5, impaired the recruitment of RAC1, whereas the silencing of RAC1 did not affect the recruitment of ARF1 to the leading edges. CONCLUSIONS: Our results indicated that the activation of ARF1 triggers the plasma membrane recruitment of RAC1 in GPCR-mediated chemotaxis, which is essential for cortical actin remodeling. Thus, membrane remodeling at the leading edges appears to precede actin remodeling in chemotaxis. Together with the fact that GIT2, which inactivates ARF1, is an integral component of the machinery activating RAC1, we proposed a model in which the ARF1-RAC1 linkage enables the regulation of ARF1 by repetitive on/off cycles during GPCR-mediated neutrophil chemotaxis.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Membrana Celular/metabolismo , Quimiotaxia , Neutrófilos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Actinas/metabolismo , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neutrófilos/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
14.
Cell Commun Signal ; 14(1): 28, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871329

RESUMO

BACKGROUND: Squamous cell carcinoma of the tongue (tongue SCC) is a major subtype of head and neck squamous cell carcinoma (HNSCC), which is an intractable cancer under current therapeutics. ARF6 and its effector AMAP1 are often overexpressed in different types of cancers, such as breast cancer and renal cancer, and in these cancers, AMAP1 binds to EPB41L5 to promote invasion, metastasis, and drug resistance. EPB41L5 is a mesenchymal-specific protein, normally induced during epithelial-mesenchymal transition (EMT) to promote focal adhesion dynamics. Similarly to breast cancer and renal cancer, the acquisition of mesenchymal phenotypes is the key process that drives the malignancy of HNSCC. We previously showed that the overexpression of AMAP1 in tongue SCC is statistically correlated with the poor outcome of patients. In this study, we examined whether tongue SCC also expresses EPB41L5 at high levels. RESULTS: Immunohistochemical staining of clinical specimens of tongue SCC demonstrated that high expression levels of EPB41L5 statistically correlate with poor disease-free survival and poor overall survival rates of patients. The tongue SCC cell line SCC-9, which overexpress Arf6 and AMAP1, also expressed EPB41L5 at high levels to promote invasiveness, whereas the weakly invasive SCC-25 cells did not express EPB41L5 at notable levels. Among the different EMT-associated transcriptional factors, ZEB1 was previously found to be most crucial in inducing EPB41L5 in breast cancer and renal cancer. In contrast, expression levels of ZEB1 did not correlate with the expression levels of EPB41L5 in tongue SCC, whereas KLF8 and FOXO3 levels showed positive correlations with EPB41L5 levels. Moreover, silencing of EPB41L5 only marginally improved the drug resistance of SCC-9 cells, even when coupled with ionizing radiation. CONCLUSION: Our results indicate that activation of the cancer mesenchymal program in tongue SCC, which leads to EPB41L5 expression, closely correlates with the poor prognosis of patients. However, ZEB1 was not the major inducer of EPB41L5 in tongue SCC, unlike in breast cancer and renal cancer. Thus, processes that trigger the mesenchymal program of tongue SCC, which drives their malignancies, seem to be substantially different from those of other cancers.


Assuntos
Fatores de Ribosilação do ADP/genética , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Neoplasias da Língua/genética , Língua/patologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/análise , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Proteínas de Membrana/análise , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Língua/metabolismo , Neoplasias da Língua/diagnóstico , Neoplasias da Língua/patologia , Regulação para Cima
16.
Cell Commun Signal ; 12: 17, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24621372

RESUMO

BACKGROUND: Despite recent advances in cancer therapeutics in general, the survival of patients with head and neck squamous cell carcinomas (HNSCCs) has not improved substantially over the past few decades. HNSCC cells often exhibit invasive and metastatic phenotypes, and expression of epidermal growth factor receptor (EGFR) and cortactin has been highly implicated in the development of malignancy in HNSCCs. We have shown previously that an Arf6 pathway, in which Arf6 is activated by GEP100 and employs AMAP1 (also called DDEF1 or ASAP1) as its downstream effector, is pivotal for the invasion and metastasis of different breast cancer cells. This pathway is activated by receptor tyrosine kinases, including EGFR; and moreover, AMAP1 physically associates with cortactin, in which inhibition of this binding effectively blocks invasion and metastasis. We here investigated whether the expression of Arf6 pathway components correlates with the poor prognosis of HNSCC patients. We have shown previously that AMAP1 protein levels are not correlated with its mRNA levels, and hence we here employed immunohistochemical staining of HNSCC clinical specimens to investigate AMAP1 protein levels. RESULTS: We found that high levels of AMAP1 protein expression on its own, as well as its co-overexpression with EGFR statistically correlates with poor disease-free survival and poor overall survival, while high levels of cortactin expression or its co-expression with EGFR did not. CONCLUSION: Our identification of predictive biomarkers, together with our previous findings on the coherent signaling pathway that these biomarkers ultimately generate should be powerful information for the further development of HNSCC therapeutics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/diagnóstico , Estudos de Casos e Controles , Intervalo Livre de Doença , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade
17.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906678

RESUMO

H3.1 histone is predominantly synthesized and enters the nucleus during the G1/S phase of the cell cycle, as a new component of duplicating nucleosomes. Here, we found that p53 is necessary to secure the normal behavior and modification of H3.1 in the nucleus during the G1/S phase, in which p53 increases C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1) levels and decreases enhancer of zeste homolog 2 (EZH2) levels in the H3.1 interactome. In the absence of p53, H3.1 molecules tended to be tethered at or near the nuclear envelope (NE), where they were predominantly trimethylated at lysine 27 (H3K27me3) by EZH2, without forming nucleosomes. This accumulation was likely caused by the high affinity of H3.1 toward phosphatidic acid (PA). p53 reduced nuclear PA levels by increasing levels of CTDNEP1, which activates lipin to convert PA into diacylglycerol. We moreover found that the cytosolic H3 chaperone HSC70 attenuates the H3.1-PA interaction, and our molecular imaging analyses suggested that H3.1 may be anchored around the NE after their nuclear entry. Our results expand our knowledge of p53 function in regulation of the nuclear behavior of H3.1 during the G1/S phase, in which p53 may primarily target nuclear PA and EZH2.


Assuntos
Núcleo Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Proteína Supressora de Tumor p53 , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fase G1 , Fase S , Membrana Nuclear/metabolismo , Metilação , Animais , Nucleossomos/metabolismo
18.
Breast Cancer Res ; 15(4): R60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23883667

RESUMO

INTRODUCTION: Ductal carcinoma in situ (DCIS) is characterized by non-invasive cancerous cell growth within the breast ducts. Although radiotherapy is commonly used in the treatment of DCIS, the effect and molecular mechanism of ionizing radiation (IR) on DCIS are not well understood, and invasive recurrence following radiotherapy remains a significant clinical problem. This study investigated the effects of IR on a clinically relevant model of Akt-driven DCIS and identified possible molecular mechanisms underlying invasive progression in surviving cells. METHODS: We measured the level of phosphorylated-Akt (p-Akt) in a cohort of human DCIS specimens by immunohistochemistry (IHC) and correlated it with recurrence risk. To model human DCIS, we used Akt overexpressing human mammary epithelial cells (MCF10A-Akt) which, in three-dimensional laminin-rich extracellular matrix (lrECM) and in vivo, form organotypic DCIS-like lesions with lumina expanded by pleiomorphic cells contained within an intact basement membrane. In a population of cells that survived significant IR doses in three-dimensional lrECM, a malignant phenotype emerged creating a model for invasive recurrence. RESULTS: P-Akt was up-regulated in clinical DCIS specimens and was associated with recurrent disease. MCF10A-Akt cells that formed DCIS-like structures in three-dimensional lrECM showed significant apoptosis after IR, preferentially in the luminal compartment. Strikingly, when cells that survived IR were repropagated in three-dimensional lrECM, a malignant phenotype emerged, characterized by invasive activity, up-regulation of fibronectin, α5ß1-integrin, matrix metalloproteinase-9 (MMP-9) and loss of E-cadherin. In addition, IR induced nuclear translocation and binding of nuclear factor-kappa B (NF-κB) to the ß1-integrin promoter region, associated with up-regulation of α5ß1-integrins. Inhibition of NF-κB or ß1-integrin signaling abrogated emergence of the invasive activity. CONCLUSIONS: P-Akt is up-regulated in some human DCIS lesions and is possibly associated with recurrence. MCF10A-Akt cells form organotypic DCIS-like lesions in three-dimensional lrECM and in vivo, and are a plausible model for some forms of human DCIS. A population of Akt-driven DCIS-like spheroids that survive IR progresses to an invasive phenotype in three-dimensional lrECM mediated by ß1-integrin and NF-κB signaling.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Integrina beta1/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/radioterapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Integrina beta1/genética , Camundongos , Invasividade Neoplásica , Recidiva Local de Neoplasia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Radiação Ionizante , Esferoides Celulares , Células Tumorais Cultivadas , Regulação para Cima
19.
Curr Opin Cell Biol ; 18(5): 558-64, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16904307

RESUMO

The identification of several ArfGAP proteins as binding partners of paxillin, an integrin signaling and scaffolding protein, has suggested the existence of molecular links between integrin functions and intracellular traffic, as proposed by MS Bretscher long ago. Among the paxillin-binding ArfGAPs, AMAP1 has recently been strongly implicated in tumor invasion as well as malignancy, owing to its highly augmented expression in tumors and its direct involvement in invasive activities. Another ArfGAP, Git2, was found to be a component of the Gbetagamma-mediated directional sensing machinery, while simultaneously playing an essential role in the suppressive control of superoxide production, which is mediated by vesicle transport in GPCR-stimulated neutrophils. These emerging molecular mechanisms may further delineate key processes regulating intracellular traffic as principal controls of cell motility and invasive activities.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/genética , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Paxilina/metabolismo , Superóxidos/metabolismo
20.
Sci Rep ; 13(1): 5203, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997629

RESUMO

Systemic inflammation underlies the association between obesity and nonalcoholic fatty liver disease (NAFLD). Here, we investigated functional changes in leukocytes' mitochondria in obese individuals and their associations with NAFLD. We analyzed 14 obese male Japanese university students whose body mass index was > 30 kg/m2 and 15 healthy age- and sex-matched lean university students as controls. We observed that the mitochondrial oxidative phosphorylation (OXPHOS) capacity with complex I + II-linked substrates in peripheral blood mononuclear cells (PBMCs), which was measured using a high-resolution respirometry, was significantly higher in the obese group versus the controls. The PBMCs' mitochondrial complex IV capacity was also higher in the obese subjects. All of the obese subjects had hepatic steatosis defined by a fatty liver index (FLI) score ≥ 60, and there was a positive correlation between their FLI scores and their PBMCs' mitochondrial OXPHOS capacity. The increased PBMCs' mitochondrial OXPHOS capacity was associated with insulin resistance, systemic inflammation, and higher serum levels of interleukin-6 in the entire series of subjects. Our results suggest that the mitochondrial respiratory capacity is increased in the PBMCs at the early stage of obesity, and the enhanced PBMCs' mitochondrial oxidative metabolism is associated with hepatic steatosis in obese young adults.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Adulto Jovem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Leucócitos Mononucleares/metabolismo , Obesidade/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA