Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Langmuir ; 40(10): 5433-5443, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427972

RESUMO

An efficient and sustainable agriculture calls for the development of novel agrochemical delivery systems able to release agrochemicals in a controlled manner. This study investigated the controlled release of the insecticide methoxyfenozide (MFZ) from lignin (LN) nanoparticles (LNPs). LN-grafted poly(ε-caprolactone) (LN-g-PCL) polymers were synthesized using two grafting methods, ring-opening polymerization (ROP)(LN-g-PCLp) and acylation reaction (LN-g-PCLa), creating polymers capable of self-assembling into nanoparticles of different properties, without surfactants. The LN-g-PCLp polymers exhibited a degree of polymerization (DP) from 22 to 101, demonstrating enhanced thermal stability after LN incorporation. LNPs loaded with MFZ exhibited a spherical core-shell structure with a hydrophilic LN outer layer and hydrophobic PCL core, with sizes affected by grafting methods and DP. LNPs controlled MFZ release, displaying variation in release profiles depending on the grafting methodology used, LN-g-PCLp DP, and temperature variations (23 to 30 °C). LNPs formulated with LN-g-PCLa showed a cumulative release of MFZ of 36.78 ± 1.23% over 196 h. Comparatively, increasing the DP of the LN-g-PCLp polymers, a reduction of the LNPs release rate from 92.39 ± 1.46% to 70.59 ± 2.40% was achieved within the same time frame. These findings contribute to identifying ways to modulate the controlled release of agrochemicals by incorporating them in renewable-based LNPs.

2.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498295

RESUMO

The field of veterinary medicine needs new solutions to address the current challenges of antibiotic resistance and the need for increased animal production. In response, a multitude of delivery systems have been developed in the last 20 years in the form of engineered nanoparticles (ENPs), a subclass of which are polymeric, biodegradable ENPs, that are biocompatible and biodegradable (pbENPs). These platforms have been developed to deliver cargo, such as antibiotics, vaccines, and hormones, and in general, have been shown to be beneficial in many regards, particularly when comparing the efficacy of the delivered drugs to that of the conventional drug applications. However, the fate of pbENPs developed for veterinary applications is poorly understood. pbENPs undergo biotransformation as they are transferred from one ecosystem to another, and these transformations greatly affect their impact on health and the environment. This review addresses nanoparticle fate and impact on animals, the environment, and humans from a One Health perspective.


Assuntos
Plásticos Biodegradáveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Medicina Veterinária/tendências , Animais , Plásticos Biodegradáveis/uso terapêutico , Ecossistema , Nanopartículas/uso terapêutico , Saúde Única , Poluentes Químicos da Água/efeitos adversos
3.
Nanomedicine ; 15(1): 188-197, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312662

RESUMO

Cataracts are responsible for half of the world blindness, surgery being the only viable treatment. Lutein, a naturally occurring carotenoid in the eye, has the potential to reduce cataract progression by protecting the eye from photo-oxidative stress. To restore the eye's natural line of defense against photo-oxidative stress, a formulation was developed using zein and poly(lactic-co-glycolic acid) nanoparticles (NPs) embedded in an optimized bioadhesive thermosensitive gel for the delivery of lutein via topical application. Cataracts were induced in Crl:WI rats via selenite injection at 13 days post-partum, followed by 7 days of treatment with free lutein or lutein-loaded NPs administered orally or topically. Cataract severity was significantly reduced in rats treated with topical applications of lutein-loaded NPs compared to the positive control, while no significant differences were observed in rats treated with other lutein formulations including oral and topically applied free lutein.


Assuntos
Catarata/prevenção & controle , Sistemas de Liberação de Medicamentos , Cristalino/efeitos dos fármacos , Luteína/administração & dosagem , Nanopartículas/administração & dosagem , Ácido Selenioso/toxicidade , Administração Oral , Administração Tópica , Animais , Catarata/induzido quimicamente , Feminino , Luteína/farmacologia , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Ratos , Oligoelementos/toxicidade
4.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362362

RESUMO

Surfactants are used to stabilize nanoemulsions by protecting their physical stability and preventing deterioration of the entrapped bioactive during processing and storage. The effect of surfactant concentration on physical-chemical properties of nanoemulsions with entrapped curcumin, relevant to commercial applications, was addressed in this research. Furthermore, the functionality of nanoemulsified curcumin in terms of lipid oxidation inhibition was determined. Protection against varying pH and thermal treatments was more significant in the nanoemulsions at the elevated surfactant level, but at these high concentrations, the surface charges of the emulsions dramatically decreased under sodium salt addition, which may result in instability over time. Nanoemulsions showed the potential to inhibit malondialdehyde (MDA) formulation by protecting the entrapped curcumin and enhance its antioxidant activity when added to milk. The fortified milk with added curcumin systems had a yellow color compared to the control. The results of the study are critical in choosing the surfactant concentration needed to stabilize emulsified curcumin, and to protect the entrapped curcumin under specific conditions of use to support the utilization of curcumin nanoemulsions as a food additive in different commercial products.


Assuntos
Fenômenos Químicos , Curcumina/química , Emulsões/química , Nanopartículas/química , Tensoativos/química , Algoritmos , Animais , Análise de Dados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Leite , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula
5.
Environ Sci Technol ; 51(24): 14065-14071, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29149563

RESUMO

In the interest of developing and characterizing a polymeric nanoparticle pesticide delivery vehicle to soybeans, zein nanoparticle (ZNP) uptake by the roots and biodistribution to the leaves of soybean plants was measured. Zein was tagged with fluorescein isothiocyanate (FITC) and made into nanoparticles (135 ± 3 nm diameter. 0.202 ± 0.034 PDI and 81 ± 4 mV zeta-potential at pH 6) using an emulsion-diffusion method. After 10 days of hydroponic exposure, association between particles and roots of plants was found to vary based on bulk nanoparticle concentration. While 0.37 mg NP/mg dry weight were detected in roots immersed in 0.88 mg NP/mL nanoparticle suspension, 0.58 mg NP/mg dry weight associated with roots immersed in a high dose nanoparticle suspension of 1.75 mg NP/mL at 10 days. Nanoparticle root uptake followed second order kinetics. A small amount of increased fluorescence was detected in the hydroponically exposed plant's leaves, suggesting that either small amounts of particles or other fluorescent contaminants of zein were up taken by the roots and biodistributed within the plant. To the authors' knowledge, this is the first study in which the uptake and time-dependent association between polymeric nanoparticles and soybeans are quantified.


Assuntos
Glycine max , Nanopartículas , Zeína/farmacocinética , Raízes de Plantas , Distribuição Tecidual
6.
Molecules ; 21(2)2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26867191

RESUMO

There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.


Assuntos
Doenças da Boca/tratamento farmacológico , Nanoestruturas/uso terapêutico , Odontologia/métodos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Nanomedicina/métodos , Nanoestruturas/química
7.
Drug Metab Rev ; 46(2): 128-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24303927

RESUMO

A review of poly(lactic-co-glycolic) acid (PLGA) nanoparticle (NP) biodistribution was conducted with the intent of identifying particle behavior for drug delivery applications. Databases such as Science Direct and Web of Science were used to locate papers on biodistribution of intravenous (i.v.) and orally delivered PLGA NPs in mice and rats. The papers included in the review were limited to those that report biodistribution data in terms of % dose particles/g tissue in the liver, kidney, spleen, lung, heart and brain. Noted trends involved particle behavior based on individual organ, particle size, animal model, type of indicator (entrapped versus covalently linked) and method of delivery (oral or i.v.). The liver showed the highest uptake of particles in mice, and the lung showed the highest uptake in rats. Minimal amounts of particles were detected in both the heart and brain of rats and mice. In rats, the concentration of particles approached 0% dose/g or decreased significantly over 24 h after administration of a single dose of particles. Higher concentrations of smaller particles were evident in the liver, kidney and spleen. Orally delivered drugs showed little to no uptake within the 24 h analysis when compared with i.v. delivered NPs. Differences in particle concentrations between rats and mice were also observed as expected when expressed as % dose/g organ. Particles with covalently linked indicators showed lower concentrations in tissues than particles with physically entrapped indicators. Further research on oral delivery of PLGA NPs as well as distribution beyond 24 h is needed to fully understand particle behavior in vivo for successful application of NPs in drug delivery.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ácido Láctico/química , Ácido Láctico/farmacocinética , Nanopartículas/química , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Administração Oral , Animais , Camundongos , Especificidade de Órgãos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Propriedades de Superfície , Distribuição Tecidual
8.
Vet Res Commun ; 48(1): 259-269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37648880

RESUMO

As is the case with other veterinary antibiotics, florfenicol (FFC) faces certain limitations, such as low solubility in water, or the fact that it is reported to interfere with the immune response after some immunoprofilactic actions in livestock. Aiming to improve its efficacy and overall performance, FFC was loaded into a polymeric nanobased delivery system by succesfully using the emulsion-evaporation technique. The poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with FFC were characterized in terms of size (101 ± 0.52 nm), zeta potential (26.80 ± 1.30 mV) and poly-dispersity index (0.061 ± 0.019). The achieved loading was 2.24 µg FFC/mg of NPs, with an entrapment efficiency of 7.9%. The antimicrobial effect, the anti-biofilm formation and the cytotoxicity properties of the NPs were evaluated. The results indicated a MIC decreased by ~97.13% for S. aureus, 99.33% for E.coli and 64.1% for P. aeruginosa when compared to free FFC. The minimum inhibitory concentration (MIC) obtained indicated the potential for using a significantly lower dose of florfenicol. The delivery system produced biofilm inhibition while showing no cytotoxic effects when tested on porcine primary fibroblasts and horse mesenchymal stem cells. These findings suggest that florfenicol can be improved and formulations optimized for use in veterinary medicine through its incorporation into a nanobased delivery system designed to release in a controlled manner over time.


Assuntos
Nanopartículas , Ácido Poliglicólico , Tianfenicol/análogos & derivados , Animais , Cavalos , Suínos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico , Sistemas de Liberação de Fármacos por Nanopartículas , Staphylococcus aureus
9.
J Econ Entomol ; 116(4): 1196-1204, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37229568

RESUMO

Previous research suggested that positively charged zein nanoparticles [(+)ZNP] were toxic to neonates of Anticarsia gemmatalis Hübner and deleterious to noctuid pests. However, specific modes of action for ZNP have not been elucidated. Diet overlay bioassays attempted to rule out the hypothesis that A. gemmatalis mortality was caused by surface charges from component surfactants. Overlay bioassays indicated that negatively charged zein nanoparticles [(-)ZNP] and its anionic surfactant, sodium dodecyl sulfate (SDS), exhibited no toxic effects when compared to the untreated check. Nonionic zein nanoparticles [(N)ZNP] appeared to increase mortality compared to the untreated check, though larval weights were unaffected. Overlay results for (+)ZNP and its cationic surfactant, didodecyldimethylammonium bromide (DDAB), were found to be consistent with former research indicating high mortalities, and thus, dosage response curves were conducted. Concentration response tests found the LC50 for DDAB on A. gemmatalis neonates was 208.82 a.i./ml. To rule out possible antifeedant capabilities, dual choice assays were conducted. Results indicated that neither DDAB nor (+)ZNP were antifeedants, while SDS reduced feeding when compared to other treatment solutions. Oxidative stress was tested as a possible mode of action, with antioxidant levels used as a proxy for reactive oxygen species (ROS) in A. gemmatalis neonates, which were fed diet treated with different concentrations of (+)ZNP and DDAB. Results indicated that both (+)ZNP and DDAB decreased antioxidant levels compared to the untreated check, suggesting that both (+)ZNP and DDAB may inhibit antioxidant levels. This paper adds to the literature on potential modes of action by biopolymeric nanoparticles.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Nanopartículas , Zeína , Animais , Antioxidantes , Larva/fisiologia , Tensoativos
10.
Environ Entomol ; 51(4): 763-771, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35727137

RESUMO

Research indicates that nanoparticles can be an effective agricultural pest management tool, though unintended effects on the insect must be evaluated before their use in agroecosystems. Chrysodeixis includens (Walker) was used as a model to evaluate chronic parental and generational exposure to empty, positively charged zein nanoparticles ((+)ZNP) and methoxyfenozide-loaded zein nanoparticles (+)ZNP(MFZ) at low-lethal concentrations. To determine concentration limits, an acute toxic response test on meridic diet evaluated (+)ZNP(MFZ) and technical grade methoxyfenozide using two diet assay techniques. No differences in acute toxicity were observed between the two treatments within their respective bioassays. With these results, population dynamics following chronic exposure to low-lethal concentrations were evaluated. Parental lifetables evaluated cohorts of C. includens reared on diet treated with LC5 equivalents of (+)ZNP, (+)ZNP(MFZ), or technical grade methoxyfenozide. Compared to technical grade methoxyfenozide, (+)ZNP(MFZ) lowered both the net reproductive rate and intrinsic rate of increase, and was more deleterious to C. includens throughout its lifespan. This was contrasted to (+)ZNP, which showed no differences in population dynamics when compared with the control. To evaluate chronic exposure to (+)ZNP, generational lifetables reared cohorts of C. includens on LC5 equivalent values of (+)ZNP and then took the resulting offspring to be reared on either (+)ZNP or untreated diet. No differences in lifetable statistics were observed between the two treatments, suggesting that (+)ZNP at low ppm do not induce toxic generational effects. This study provides evidence into the effects of nanodelivered methoxyfenozide and the generational impact of (+)ZNP.


Assuntos
Hidrazinas , Hormônios Juvenis , Mariposas , Nanopartículas , Zeína , Animais , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Nanopartículas/toxicidade , Zeína/toxicidade
11.
Drug Deliv ; 29(1): 1007-1024, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35363104

RESUMO

This review provides a synthesis of the last ten years of research on nanodelivery systems used for the delivery of essential oils (EOs), as well as their potential as a viable alternative to antibiotics in human and veterinary therapy. The use of essential oils alone in therapy is not always possible due to several limitations but nanodelivery systems seem to be able to overcome these issues. The choice of the essential oil, as well as the choice of the nanodelivery system influences the therapeutic efficacy obtained. While several studies on the characterization of EOs exist, this review assesses the characteristics of the nanomaterials used for the delivery of essential oils, as well as impact on the functionality of nanodelivered essential oils, and successful applications. Two classes of delivery systems stand out: polymeric nanoparticles (NPs) including chitosan, cellulose, zein, sodium alginate, and poly(lactic-co-glycolic) acid (PLGA), and lipidic NPs including nanostructured lipid carriers, solid lipid NPs, nanoemulsions, liposomes, and niosomes. While the advantages and disadvantages of these delivery systems and information on stability, release, and efficacy of the nanodelivered EOs are covered in the literature as presented in this review, essential information, such as the speed of emergence of a potential bacteria resistance to these new systems, or dosages for each type of infection and for each animal species or humans is still missing today. Therefore, more quantitative and in vivo studies should be conducted before the adoption of EOs loaded NPs as an alternative to antibiotics, where appropriate.


Assuntos
Quitosana , Óleos Voláteis , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Óleos Voláteis/farmacologia , Polímeros/química
12.
J Control Release ; 352: 485-496, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280154

RESUMO

This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate. The bulk C6 release profile using AF4 was validated against conventional analysis of drug extracted from the NPs and complemented with high performance liquid chromatography - quadrupole time-of-flight (HPLC-QTOF) mass spectrometry analysis of oligomeric PLGA species. Interpretation of the bulk drug release profile was ambiguous, with several release models yielding reasonable fits. In contrast, the size-resolved release profiles from AF4 provided critical information to confidently establish the release mechanism. Specifically, the C6-loaded NPs exhibited size-independent release rate constants and no significant NP size or shape transformations, suggesting surface desorption rather than diffusion through the PLGA matrix or erosion. This conclusion was supported through comparative experimental evaluation of PLGA NPs carrying a fully entrapped drug, enrofloxacin, which showed size-dependent diffusive release, along with density functional theory (DFT) calculations indicating a higher adsorption affinity of C6 onto PLGA. In summary, the development of the size-resolved AF4 method and data analysis framework fulfills salient analytical gaps to determine drug localization and release mechanisms from nanomedicines.


Assuntos
Nanopartículas , Ácido Poliglicólico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico/química , Liberação Controlada de Fármacos , Tamanho da Partícula , Nanopartículas/química , Portadores de Fármacos/química
13.
PLoS One ; 17(8): e0268307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001584

RESUMO

Peripheral artery disease (PAD) is a systemic vascular disease of the legs that results in a blockage of blood flow from the heart to the lower extremities. Now one of the most common causes of mortality in the U.S., the first line of therapy for PAD is to mechanically open the blockages using balloon angioplasty. Coating the balloons with antiproliferative agents can potentially reduce vessel re-narrowing, or restenosis after surgical intervention, but current drug-coated balloons releasing chemotherapy agents like paclitaxel have in some cases shown increased mortality long-term. Our aim was to design a novel drug-coated balloon using a polymeric nanodelivery system for a sustained release of polyphenols that reduce restenosis but with reduced toxicity compared to chemotherapy agents. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles with entrapped quercetin, a dimethoxy quercetin (rhamnazin), as well as quercetin covalently attached to PLGA, were developed. Balloon catheters were coated with polymeric nanoparticles using an ultrasonic method, and nanoparticle characteristics, drug loading, coating uniformity and drug release were determined. The adhesion of nanoparticles to vascular smooth muscle cells and the antiproliferative effect of nano-delivered polyphenols were also assessed. Of the nanoparticle systems tested, those with covalently attached quercetin provided the most sustained release over a 6-day period. Although these particles adhered to cells to a smaller extent compared to other nanoparticle formulations, their attachment was resistant to washing. These particles also exhibited the greatest anti-proliferative effect. In addition, their attachment was not altered when the cells were grown in calcifying conditions, and in PAD tissue calcification is typically a condition that impedes drug delivery. Moreover, the ultrasonic coating method generated a uniform balloon coating. The polymeric nanoparticle system with covalently attached quercetin developed herein is thus proposed as a promising platform to reduce restenosis post-angioplasty.


Assuntos
Angioplastia com Balão , Nanopartículas , Doença Arterial Periférica , Angioplastia com Balão/métodos , Materiais Revestidos Biocompatíveis , Preparações de Ação Retardada , Humanos , Paclitaxel/farmacologia , Doença Arterial Periférica/terapia , Polímeros , Quercetina/farmacologia
14.
Sci Rep ; 11(1): 12270, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112822

RESUMO

Polymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.

15.
J Control Release ; 338: 410-421, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453956

RESUMO

Polymeric nanoparticles (NPs) are typically designed to enhance the efficiency of drug delivery by controlling the drug release rate. Hence, it is critical to obtain an accurate drug release profile. This study presents the first application of asymmetric flow field-flow fractionation (AF4) with fluorescence detection (FLD) to quantify release profiles of fluorescent drugs from polymeric NPs, specifically poly(lactic-co-glycolic acid) NPs loaded with enrofloxacin (PLGA-Enro NPs). In contrast to conventional measurements requiring separation of the NPs and dissolved drugs (typically by dialysis) prior to quantification, AF4 provides in situ removal of unincorporated drugs, while the judicious combination of online FLD and UV detection selectively provides the entrapped drug and PLGA NP concentrations, respectively, and hence the drug loading. NP size and shape factors are simultaneously obtained by online dynamic and multi-angle light scattering (DLS, MALS) detectors. The AF4 and dialysis approaches were compared to evaluate drug release from PLGA-Enro NPs containing a high proportion (≈ 94%) of unincorporated (burst release) drug at three temperatures spanning the glass transition temperature (Tg ≈ 33 °C) of the NPs. The AF4 method clearly captured the temperature dependence of the drug release relative to Tg (from no release at 20 °C to rapid release at 37 °C). In contrast, dialysis was not able to distinguish differences in the extent or rate of release of the entrapped drug because of interferences from the burst release, as well as the dialysis lag time, as supported through a diffusion model and validation experiments on purified NPs with low burst release. Finally, the multi-detector AF4 analysis yielded unique size-dependent release profiles across the entire NP size distribution, with smaller NPs showing faster release consistent with radial diffusion from the NPs. Overall, this study demonstrates the novel application and advantages of multi-detector AF4 methods, particularly AF4-FLD, to obtain direct, size-resolved release profiles of fluorescent drugs from polymeric NPs.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Liberação Controlada de Fármacos , Tamanho da Partícula , Diálise Renal
16.
J Hazard Mater ; 414: 125454, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677317

RESUMO

Poor bioavailability of antibiotics, toxicity, and development of antibiotic-resistant bacteria jeopardize antibiotic treatments. To circumvent these issues, drug delivery using nanocarriers are highlighted to secure the future of antibiotic treatments. This work investigated application of nanocarriers, to prevent and treat bacterial infection, presenting minimal toxicity to the IPEC-J2 cell line. To accomplish this, polymer-based nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and lignin-graft-PLGA (LNP) loaded with enrofloxacin (ENFLX) were synthesized, yielding spherical particles with average sizes of 111.8 ± 0.6 nm (PLGA) and 117.4 ± 0.9 nm (LNP). The releases of ENFLX from PLGA and LNP were modeled by a theoretical diffusion model considering both the NP and dialysis diffusion barriers for drug release. Biocompatible concentrations of ENFLX, enrofloxacin loaded PLGA(Enflx) and LNP(Enflx) were determined based on examination of bacterial inhibition, toxicity, and ROS generation. Biocompatible concentrations were used for treatment of higher- and lower-level infections in IPEC-J2 cells. Prevention of bacterial infection by LNP(Enflx) was enhanced more than 50% compared to ENFLX at lower-level infection. At higher-level infection, PLGA(Enflx) and LNP(Enflx) demonstrated 25% higher prevention of bacteria growth compared to ENFLX alone. The superior treatment achieved by the nanocarried drug is accredited to particle uptake by endocytosis and slow release of the drug intracellularly, preventing rapid bacterial growth inside the cells.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli O157 , Nanopartículas , Portadores de Fármacos , Enrofloxacina , Ácido Láctico , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
17.
NanoImpact ; 23: 100329, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559830

RESUMO

The majority of published research on the effect of engineered nanoparticles on terrestrial plant species is focused on inorganic nanoparticles, with the effects of organic polymeric nanoparticles (NP) on plants remaining largely unexplored. It is critical to understand the impact of polymeric NPs on plants if these particles are to be used as agrochemical delivery systems. This study investigates the effect of biodegradable polymeric lignin-based nanoparticles (LNPs) and zein nanoparticles (ZNP) on soybean plant health. The LNPs (114 ± 3.4 nm, -53.8 ± 6.9 mV) were synthesized by emulsion evaporation from lignin-graft-poly(lactic-co-glycolic) acid, and ZNPs (142 ± 3.9 nm and + 64.5 ± 4.7 mV) were synthesized by nanoprecipitation. Soybeans were grown hydroponically and treated with 0.02, 0.2, and 2 mg/ml of LNPs or ZNPs at 28 days after germination. Plants were harvested after 1, 3, 7 and 14 days of particle exposure and analyzed for root and stem length, chlorophyll concentration, dry biomass of roots and stem, nutrient uptake and plant ROS. Root and stem length, chlorophyll and stem biomass did not differ significantly between treatments and controls for LNPs-treated plants at all concentrations, and at low doses of ZNPs. At 2 mg/ml ZNPs, the highest concentration tested, after 7 days of treatment chlorophyll levels and root biomass increased and stem length was reduced in comparison to the control. Nutrient uptake was largely unaffected at 0.02 and 0.2 mg/ml NPs. A concentration-dependent increase in the oxidative stresss was detected, especially in the ZNP treated plants. Overall, LNPs and ZNPs had a minimum impact on soybean health especially at low and medium doses. To our knowledge this is the first study to show the effect of zein and lignin based polymeric NPs designed for agrochemical delivery on soybean plant health.


Assuntos
Nanopartículas , Zeína , Agroquímicos/farmacologia , Clorofila/farmacologia , Lignina/farmacologia , Raízes de Plantas , Glycine max , Zeína/farmacologia
18.
Nanotechnology ; 21(28): 285104, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20585163

RESUMO

Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml( - 1) TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 +/- 0.002 mg ml( - 1)) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 +/- 5.6% after 96 h.


Assuntos
Benzoquinonas/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Micelas , Nanopartículas/química , Ácido Poliglicólico/química , Análise de Variância , Antioxidantes/farmacologia , Benzoquinonas/química , Compostos de Bifenilo/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Emulsões , Humanos , Nanopartículas/ultraestrutura , Picratos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
19.
J Econ Entomol ; 113(6): 2739-2744, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32940682

RESUMO

A meridic diet overlay bioassay using empty, positively charged zein nanoparticles ((+)ZNP) was performed on soybean looper (Chrysodeixis includens (Walker)), tobacco budworm (Heliothis virescens (F.)), and velvetbean caterpillar (Anticarsia gemmatalis Hübner) (Lepidoptera: Noctuidae). Assessment of effects on mortality and development weights 7 d after ingestion of (+)ZNP were evaluated on larvae of each species. Treatments involved different concentrations, with H. virescens and A. gemmatalis offered 0 and 3,800 ppm (+)ZNP, whereas C. includens colonies were offered 0, 630, 1,260, and 2,520 ppm (+)ZNP. Mortality of A. gemmatalis and C. includens increased after ingestion of the highest (+)ZNP concentrations, while H. virescens neonate mortality was unaffected. Neonate and third-instar weights of A. gemmatalis and C. includens, and neonate H. virescens, decreased with high (+)ZNP concentrations. Following mortality results from A. gemmatalis neonates, a concentration response test was performed using a range of (+)ZNP concentrations. The LC50 for A. gemmatalis was 1,478 ppm. The potential of (+)ZNP as a pest management tactic is discussed.


Assuntos
Lepidópteros , Mariposas , Nanopartículas , Zeína , Animais , Proteínas Hemolisinas , Larva , Controle Biológico de Vetores , Glycine max
20.
ACS Omega ; 5(17): 9892-9902, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391476

RESUMO

A lignin-graft-poly(lactic-co-glycolic) acid (PLGA) biopolymer was synthesized with two types of lignin (LGN), alkaline lignin (ALGN) and sodium lignosulfonate (SLGN), at different (A/S)LGN/PLGA ratios (1:2, 1:4, and 1:6 w/w). 1H NMR and Fourier-transform infrared spectroscopy (FT-IR) confirmed the conjugation of PLGA to LGN. The (A/S)LGN-graft-PLGA biopolymers were used to form nanodelivery systems suitable for entrapment and delivery of drugs for disease treatment. The LGN-graft-PLGA NPs were generally small (100-200 nm), increased in size with the amount of PLGA added, monodisperse, and negatively charged (-48 to -60 mV). Small-angle scattering data showed that particles feature a relatively smooth surface and a compact spherical structure with a distinct core and a shell. The core size and shell thickness varied with the LGN/PLGA ratio, and at a 1:6 ratio, the particles deviated from the core-shell structure to a complex internal structure. The newly developed (A/S)LGN-graft-PLGA NPs are proposed as a potential delivery system for applications in biopharmaceutical, food, and agricultural sectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA