Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Am J Bot ; 109(4): 580-601, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170754

RESUMO

PREMISE: Evolutionary studies require solid phylogenetic frameworks, but increased volumes of phylogenomic data have revealed incongruent topologies among gene trees in many organisms both between and within genomes. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here we investigate the degree of gene-tree discordance in Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. METHODS: A densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of this topology is tested by examining a full plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum (Angiosperms353 probe set). RESULTS: While the taxonomic framework of Solanum remained stable, gene tree conflicts and discordance between phylogenetic trees generated from the target-capture and plastome datasets were observed. The latter correspond to regions with short internodal branches, and network analysis and polytomy tests suggest the backbone is composed of three polytomies found at different evolutionary depths. The strongest area of discordance, near the crown node of Solanum, could potentially represent a hard polytomy. CONCLUSIONS: We argue that incomplete lineage sorting due to rapid diversification is the most likely cause for these polytomies, and that embracing the uncertainty that underlies them is crucial to understand the evolution of large and rapidly radiating lineages.


Assuntos
Magnoliopsida , Solanum , Filogenia , Plastídeos/genética , Solanum/genética
2.
Brief Bioinform ; 20(1): 58-65, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28968841

RESUMO

Circular RNAs are widely existing in eukaryotes. However, there is as yet no tissue-specific Arabidopsis circular RNA database, which hinders the study of circular RNA in plants. Here, we used 622 Arabidopsis RNA sequencing data sets from 87 independent studies hosted at NCBI SRA and developed AtCircDB to systematically identify, store and retrieve circular RNAs. By analyzing back-splicing sites, we characterized 84 685 circular RNAs, 30 648 tissue-specific circular RNAs and 3486 microRNA-circular RNA interactions. In addition, we used a metric (detection score) to measure the detection ability of the circular RNAs using a big-data approach. By experimental validation, we demonstrate that this metric improves the accuracy of the detection algorithm. We also defined the regions hosting enriched circular RNAs as super circular RNA regions. The results suggest that these regions are highly related to alternative splicing and chloroplast. Finally, we developed a comprehensive tissue-specific database (AtCircDB) to help the community store, retrieve, visualize and download Arabidopsis circular RNAs. This database will greatly expand our understanding of circular RNAs and their related regulatory networks. AtCircDB is freely available at http://genome.sdau.edu.cn/circRNA.


Assuntos
Arabidopsis/genética , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , RNA de Plantas/genética , RNA/genética , Algoritmos , Big Data , Biologia Computacional , Internet , MicroRNAs/genética , RNA Circular , Análise de Sequência de RNA/estatística & dados numéricos , Distribuição Tecidual/genética , Interface Usuário-Computador
3.
Cladistics ; 36(6): 569-593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618987

RESUMO

The eusporangiate marattialean ferns represent an ancient radiation with a rich fossil record but limited modern diversity in the tropics. The long evolutionary history without close extant relatives has confounded studies of the phylogenetic origin, rooting and timing of marattialean ferns. Here we present new complete plastid genomes of six marattialean species and compiled a plastid genome dataset representing all of the currently accepted marattialean genera. We further supplemented this dataset by compiling a large dataset of mitochondrial genes and a phenotypic data matrix covering both extant and extinct representatives of the lineage. Our phylogenomic and total-evidence analyses corroborated the postulated position of marattialean ferns as the sister to leptosporangiate ferns, and the position of Danaea as the sister to the remaining extant marattialean genera. However, our results provide new evidence that Christensenia is sister to Marattia and that M. cicutifolia actually belongs to Eupodium. The apparently highly reduced rate of molecular evolution in marattialean ferns provides a challenge for dating the key phylogenetic events with molecular clock approaches. We instead applied a parsimony-based total-evidence dating approach, which suggested a Triassic age for the extant crown group. The modern distribution can best be explained as mainly resulting from vicariance following the breakup of Pangaea and Gondwana. We resolved the fossil genera Marattiopsis, Danaeopsis and Qasimia as members of the monophyletic family Marattiaceae, and the Carboniferous genera Sydneia and Radstockia as the monophyletic sister of all other marattialean ferns.

4.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722033

RESUMO

Polyploidization is a frequent phenomenon in plants, which entails the increase from one generation to the next by multiples of the haploid number of chromosomes. While tetraploidization is arguably the most common and stable outcome of polyploidization, over evolutionary time triploids often constitute only a transient phase, or a "triploid bridge", between diploid and tetraploid levels. In this study, we reconstructed in a robust phylogenomic and statistical framework the evolutionary history of polyploidization in Arundo, a small genus from the Poaceae family with promising biomass, bioenergy and phytoremediation species. Through the obtainment of 10 novel leaf transcriptomes for Arundo and outgroup species, our results prove that recurrent demiduplication has likely been a major driver of evolution in this species-poor genus. Molecular dating further demonstrates that the species originating by demiduplication stalled in the "triploid bridge" for evolutionary times in the order of millions of years without undergoing tetratploidization. Nevertheless, we found signatures of molecular evolution highlighting some of the processes that accompanied the genus radiation. Our results clarify the complex nature of Arundo evolution and are valuable for future gene functional validation as well as reverse and comparative genomics efforts in the Arundo genus and other Arundinoideae.


Assuntos
Evolução Molecular , Filogenia , Poaceae/genética , Poliploidia
5.
Nucleic Acids Res ; 45(6): e42, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27903911

RESUMO

MicroRNAs (miRNAs) are ∼19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org.


Assuntos
Proteínas Argonautas/metabolismo , Simulação por Computador , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Modelos Genéticos , Algoritmos , Sítios de Ligação , Linhagem Celular , Humanos , Imunoprecipitação , Aprendizado de Máquina , MicroRNAs/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Software
6.
Photosynth Res ; 136(3): 357-369, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29230609

RESUMO

Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF0CF1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poaceae/genética , Cloreto de Sódio/farmacologia , Triticum/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Cloroplastos/fisiologia , Éxons/genética , Perfilação da Expressão Gênica , Genes de Cloroplastos/genética , Íntrons/genética , Oxirredução , Fotossíntese/fisiologia , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Edição de RNA , Splicing de RNA , Estresse Fisiológico , Triticum/efeitos dos fármacos , Triticum/fisiologia
7.
Plant Physiol ; 172(1): 272-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27373688

RESUMO

Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Genoma de Planta/genética , Zosteraceae/genética , Organismos Aquáticos/genética , Duplicação Gênica , Ontologia Genética , Genes de Plantas/genética , Anotação de Sequência Molecular , Oceanos e Mares , Proteínas de Plantas/genética , Análise de Sequência de RNA
8.
Funct Integr Genomics ; 16(5): 465-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27443314

RESUMO

Seagrass meadows are disappearing at alarming rates as a result of increasing coastal development and climate change. The emergence of omics and molecular profiling techniques in seagrass research is timely, providing a new opportunity to address such global issues. Whilst these applications have transformed terrestrial plant research, they have only emerged in seagrass research within the past decade; In this time frame we have observed a significant increase in the number of publications in this nascent field, and as of this year the first genome of a seagrass species has been sequenced. In this review, we focus on the development of omics and molecular profiling and the utilization of molecular markers in the field of seagrass biology. We highlight the advances, merits and pitfalls associated with such technology, and importantly we identify and address the knowledge gaps, which to this day prevent us from understanding seagrasses in a holistic manner. By utilizing the powers of omics and molecular profiling technologies in integrated strategies, we will gain a better understanding of how these unique plants function at the molecular level and how they respond to on-going disturbance and climate change events.


Assuntos
Ecossistema , Genoma de Planta/genética , Alga Marinha/genética , Mudança Climática , Oceanos e Mares
9.
J Exp Bot ; 67(4): 1079-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26585228

RESUMO

An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions.


Assuntos
DNA de Plantas/genética , Secas , Hordeum/fisiologia , Raízes de Plantas/fisiologia , Transcriptoma , DNA de Plantas/metabolismo , Perfilação da Expressão Gênica , Hordeum/genética , Análise de Sequência de DNA
10.
BMC Genomics ; 16: 721, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26391769

RESUMO

BACKGROUND: Protein functional diversity at the post-transcriptional level is regulated through spliceosome mediated pre-mRNA alternative splicing (AS) events and that has been widely demonstrated to be a key player in regulating the functional diversity in plants. Identification and analysis of AS genes in cereal crop plants are critical for crop improvement and understanding regulatory mechanisms. RESULTS: We carried out the comparative analyses of the functional landscapes of the AS using the consensus assembly of expressed sequence tags and available mRNA sequences in four cereal plants. We identified a total of 8,734 in Oryza sativa subspecies (ssp) japonica, 2,657 in O. sativa ssp indica, 3,971 in Sorghum bicolor, and 10,687 in Zea mays AS genes. Among the identified AS events, intron retention remains to be the dominant type accounting for 23.5 % in S. bicolor, and up to 55.8 % in O. sativa ssp indica. We identified a total of 887 AS genes that were conserved among Z. mays, S. bicolor, and O. sativa ssp japonica; and 248 AS genes were found to be conserved among all four studied species or ssp. Furthermore, we identified 53 AS genes conserved with Brachypodium distachyon. Gene Ontology classification of AS genes revealed functional assignment of these genes in many biological processes with diverse molecular functions. CONCLUSIONS: AS is common in cereal plants. The AS genes identified in four cereal crops in this work provide the foundation for further studying the roles of AS in regulation of cereal plant growth and development. The data can be accessed at Plant Alternative Splicing Database (http://proteomics.ysu.edu/altsplice/).


Assuntos
Processamento Alternativo , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Evolução Molecular , Éxons , Etiquetas de Sequências Expressas , Genoma de Planta , Íntrons , Anotação de Sequência Molecular , Isoformas de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA