Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(12): e202303984, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127103

RESUMO

In recent decades, many efforts have been devoted to studying reactions catalyzed in nanoconfined spaces. The most impressive aspect of catalysis in nanoconfined spaces is that the reactivity of the molecules can be smartly driven to disobey classical behavior. A green and efficient three-component aza-Darzens (TCAD) reaction using a catalytic amount of γ-cyclodextrins (CDs) in water has been developed to synthesize N-phenylaziridines. CDs effectively performed this reaction in an environmentally friendly setting, achieving good yields. The same reaction was then performed using polymeric γ-CD such as a γ-cyclodextrin polymer crosslinked (GCDPC) with epichlorohydrin, a sponge-like macroporous γ-cyclodextrin-based cryogel (GCDC), and a γ-cyclodextrin-based hydrogel (GCDH). The homogeneous and heterogeneous catalyst recovery was then studied, and it was proved to be easily recycled several times without relevant activity loss. Water, as a unique and eco-friendly reaction medium, has been utilized for the first time, to the best of our knowledge, in this reaction. The inclusion of the reagents in CDs has been studied and rationalized by NMR spectroscopy experiments and molecular modeling calculations. The credit of the presented protocol includes good yields and catalyst reusability and precludes the use of organic solvents.

2.
Bioorg Chem ; 150: 107573, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905885

RESUMO

Bioorthogonal reactions have revolutionized chemical biology by enabling selective chemical transformations within living organisms and cells. This review comprehensively explores bioorthogonal chemistry, emphasizing inverse-electron-demand Diels-Alder (IEDDA) reactions between tetrazines and strained dienophiles and their crucial role in chemical biology and various applications within the human body. This highly reactive and selective reaction finds diverse applications, including cleaving antibody-drug conjugates, prodrugs, proteins, peptide antigens, and enzyme substrates. The versatility extends to hydrogel chemistry, which is crucial for biomedical applications, yet it faces challenges in achieving precise cellularization. In situ activation of cytotoxic compounds from injectable biopolymer belongs to the click-activated protodrugs against cancer (CAPAC) platform, an innovative approach to tumor-targeted prodrug delivery and activation. The CAPAC platform, relying on click chemistry between trans-cyclooctene (TCO) and tetrazine-modified biopolymers, exhibits modularity across diverse tumor characteristics, presenting a promising approach in anticancer therapeutics. The review highlights the importance of bioorthogonal reactions in developing radiopharmaceuticals for positron emission tomography (PET) imaging and theranostics, offering a promising avenue for diverse therapeutic applications.


Assuntos
Reação de Cicloadição , Ciclo-Octanos , Humanos , Ciclo-Octanos/química , Ciclo-Octanos/síntese química , Química Click , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Estrutura Molecular
3.
Bioorg Chem ; 152: 107721, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39178705

RESUMO

Hydrogen peroxide (H2O2) detection is paramount in biological and clinical domains due to its pivotal role in various physiological and pathological processes. This molecule is a crucial metabolite and effector in cellular redox mechanisms, influencing diverse cellular signaling pathways and bolstering the body's defense mechanisms against infection and oxidative stress. Organic molecule-based electrodes present unique advantages such as operational versatility and scalability, rendering them attractive candidates for sensor development across diverse fields encompassing food safety, healthcare, and environmental monitoring. This study explores the electrochemical properties of a tris(3-hydroxypyridin-4-one) THP, which has been unexplored in electrochemical sensing. Leveraging THP's chelating properties, we aimed to develop an electrochemical probe for hydrogen peroxide detection. Our investigations reveal promising results, with the developed sensor exhibiting a low limit of detection (LOD) of 144 nM, underscoring its potential utility in sensitive and selective H2O2 detection applications. In addition, the new sensor was also tested on fetal bovine serum (FBS) to emphasize future applications on biological matrices. This research signifies a significant stride in advancing electrochemical sensor technologies for hydrogen peroxide detection with several novelties related to the usage of THP, such as high sensitivity and selectivity, performance in biological matrices, repeatability, stability, and reproducibility, economical and practical advantages. This research opens new avenues for enhanced biomedical diagnostics and therapeutic interventions.


Assuntos
Técnicas Eletroquímicas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/análise , Estrutura Molecular , Limite de Detecção , Animais , Eletrodos , Bovinos , Piridinas/química
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047831

RESUMO

In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are extensively available and routinely used for disease diagnosis. PET probes with peptide-based targeting are typically composed of small peptides especially developed to have high affinity and specificity for a range of cellular and tissue targets. These probes' key benefits include being less expensive than traditional antibody-based PET tracers and having an effective chemical modification process that allows them to be radiolabeled with almost any radionuclide, making them highly appealing for clinical usage. Currently, as with every pharmaceutical design, the use of in silico strategies is steadily growing in this field, even though it is not part of the standard toolkit used during radiopharmaceutical design. This review describes the recent applications of computational design approaches in the design of novel peptide-based radiopharmaceuticals.


Assuntos
Peptídeos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos , Compostos Radiofarmacêuticos , Desenho Assistido por Computador
5.
Int J Biol Macromol ; 277(Pt 4): 134514, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111504

RESUMO

The current environmental consciousness of the world's population encourages researchers to work on new materials that are environmentally benign and able to display the appropriate features for the needed application. To develop high-performing, inexpensive eco-materials, scientists have frequently turned to nature, attempting to mimic its processes' excellent performance at a reasonable price. In this regard, we decided to focus on alginic acid (AA), a polysaccharide widely found in brown algae, and kojic acid (KA), a chelating agent fungi produces. This study proposes rapidly synthesizing a sustainable, biocompatible material (AK) based on AA and KA, employing chlorokojic acid (CKA). The material has a dual function: antibacterial activity on both Gram-positive and Gram-negative bacteria, without any cytotoxic action on human cells in vitro, and catalytic ability to convert CO2 into cyclic carbonates at atmospheric pressure, without solvents, with high yields, and without the use of metals. Furthermore, the material's insolubility in organic solvents allows it to be easily separated from the reaction product and reused for other catalytic cycles. Both applications have a key role in the medical and environmental fields, combating the outbreak of infections and providing an innovative methodology to fix the CO2 on specific substrates.


Assuntos
Ácido Algínico , Antibacterianos , Dióxido de Carbono , Pironas , Pironas/química , Pironas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Dióxido de Carbono/química , Ácido Algínico/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Catálise , Testes de Sensibilidade Microbiana , Alginatos/química
6.
ACS Appl Bio Mater ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253768

RESUMO

This paper delves into the intersection of biomaterials and antibacterial agents, highlighting the importance of alginic acid-based biomaterials. We investigate enhancing antibacterial properties by functionalizing alginic acid with an ionic liquid and a potent chelating agent, tris(hydroxypyridinone) (THP). Initial functionalization with the ionic liquid markedly improves the material's antibacterial efficacy. Subsequent functionalization with THP further enhances this activity, reducing the minimum inhibitory concentration from 6 to 3 mg/mL. Notably, the newly developed dual-functionalized materials exhibit no cytotoxic effects at the concentrations tested, underscoring their potential for safe and effective antibacterial applications. These findings highlight the promising role of dual-functionalized alginic acid biomaterials in developing advanced antibacterial treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA