Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genet Med ; 25(7): 100839, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057675

RESUMO

PURPOSE: LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date. METHODS: Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems. RESULTS: Affected individuals presented with developmental and/or behavioral abnormalities, autism spectrum disorder, variable intellectual disability, and microcephaly. We observed nucleolar accumulation for 2 missense variants located within the DNA-binding HOX domain, impaired interaction with co-factor LDB1 for another variant located in the protein-protein interaction-mediating LIM domain, and impaired transcriptional activation by luciferase assay for 4 missense variants. CONCLUSION: We implicate LHX2 haploinsufficiency by deletion and likely gene-disrupting variants as causative for a variable NDD. Our findings suggest a loss-of-function mechanism also for likely pathogenic LHX2 missense variants. Together, our observations underscore the importance of LHX2 in the nervous system and for variable neurodevelopmental phenotypes.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Proteínas com Homeodomínio LIM/genética , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações
2.
Mol Genet Metab ; 139(3): 107626, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37354892

RESUMO

Sengers syndrome (OMIM# 212350) is a rare autosomal recessive mitochondrial disease caused by biallelic pathogenic variants in the AGK gene, which encodes the acylglycerol kinase enzyme. The syndrome was originally defined as a "triad" of hypertrophic cardiomyopathy, cataracts, and lactic acidosis, with or without skeletal myopathy. The clinical manifestation of Sengers Syndrome exhibits substantial heterogeneity, with mild and severe/infantile forms reported. Further, biallelic AGK pathogenic variants have also been identified in a familial case of non-syndromic isolated cataract (OMIM# 614691), expanding our understanding of the gene's influence beyond the originally defined syndrome. In this study, we provide a systematic review of molecularly confirmed cases with biallelic AGK pathogenic variants (Supplementary Table 1). Our analysis demonstrates the variable expressivity and penetrance of the central features of Sengers syndrome, as follows: cataracts (98%), cardiomyopathy (88%), lactic acidosis (adjusted 88%), and skeletal myopathy (adjusted 74%) (Table 1). Furthermore, we investigate the associations between genotype, biochemical profiles, and clinical outcomes, with a particular focus on infantile mortality. Our findings reveal that patients carrying homozygous nonsense variants have a higher incidence of infant mortality and a lower median age of death (p = 0.005 and p = 0.02, Table 2a). However, the location of pathogenic variants within the AGK domains was not significantly associated with infantile death (p = 0.62, Table 2b). Additionally, we observe a borderline association between the absence of lactic acidosis and longer survival (p = 0.053, Table 2c). Overall, our systematic review sheds light on the diverse clinical manifestations of AGK-related disorders and highlights potential factors that influence its prognosis. These provide important implications for the diagnosis, treatment, and counseling of affected individuals and families.


Assuntos
Acidose Láctica , Cardiomiopatias , Catarata , Doenças Musculares , Lactente , Humanos , Acidose Láctica/genética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Catarata/genética , Doenças Musculares/genética , Doenças Musculares/complicações , Variação Biológica da População , Fosfotransferases (Aceptor do Grupo Álcool)
3.
Mol Genet Metab ; 139(1): 107579, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37099821

RESUMO

Among researchers and clinicians, there is a call for the development and validation of new measures to better assess and characterize neurocognitive difficulties associated with early-treated phenylketonuria (ETPKU) and other metabolic disorders. The NIH Toolbox represents a relatively new computer-administered assessment tool and provides a sampling of performance across multiple cognitive domains, several of which (e.g., executive function, processing speed) are at risk for disruption in ETPKU. The goal of the present study was to provide an initial evaluation of the value and sensitivity of the NIH Toolbox for use with individuals with ETPKU. To this end, a sample of adults with ETPKU and a demographically-matched comparison group without PKU completed the cognitive and motor batteries of the Toolbox. Results indicate that overall performance (as reflected by the Fluid Cognition Composite) was sensitive to both group differences (ETPKU vs non-PKU) as well as blood Phe levels (a marker of metabolic control). The present findings offer preliminary support for the utility of the NIH Toolbox as a measure of neurocognitive functioning in individuals with ETPKU. Future research including a larger sample size and broader age range is needed to fully validate the Toolbox for clinical and research use with individuals with ETPKU.


Assuntos
Cognição , Fenilcetonúrias , Humanos , Adulto , Testes Neuropsicológicos , Função Executiva , Velocidade de Processamento
4.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35675510

RESUMO

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Espasmos Infantis , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina , Atrofia , Criança , Homeostase , Humanos , Lactente , Lisossomos , Fenótipo
5.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130282

RESUMO

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Assuntos
Mutação com Ganho de Função , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Adulto , Criança , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Linhagem , Conformação Proteica
6.
Mol Genet Metab ; 137(1-2): 104-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35964530

RESUMO

Novel pharmaceutical therapies such as pegvaliase, phenylalanine ammonia lyase (PAL), have enhanced disease control for many individuals with phenylketonuria (PKU). We present a retrospective chart review to assess pegvaliase doses over time in individuals followed at the Boston Children's Hospital PAL Clinic, including those who started pegvaliase in a clinical trial ("trial patients") and those who started after drug came to market ("post-market patients"). Trial patients were on pegvaliase an average of 4.8 years longer, and their mean current pegvaliase dose was 126 ± 92 compared to 223 ± 147 mg/week for post-market patients (p = 0.0155), suggesting that the pegvaliase dose for target efficacy may decrease over time in adults with PKU. In post-market patients, we demonstrated a significant, inverse correlation with dose change and number of weeks from response (r = -0.46, p = 0.046). The entire cohort showed significant variability in terms of time to achieve a therapeutic response, response dose, and current dose. Our data suggest that patients tolerate a reduction in pegvaliase dose over time while maintaining efficacy. This is a clinically meaningful finding as it indicates that patients may reduce number of weekly injections over time on pegvaliase.


Assuntos
Fenilalanina Amônia-Liase , Fenilcetonúrias , Adulto , Humanos , Fenilalanina Amônia-Liase/uso terapêutico , Fenilcetonúrias/tratamento farmacológico , Estudos Retrospectivos , Ensaios Clínicos como Assunto
7.
Mol Genet Metab ; 137(1-2): 114-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36027720

RESUMO

BACKGROUND: Early treated patients with phenylketonuria (PKU) often become lost to follow-up from adolescence onwards due to the historical focus of PKU care on the pediatric population and lack of programs facilitating the transition to adulthood. As a result, evidence on the management of adolescents and young adults with PKU is limited. METHODS: Two meetings were held with a multidisciplinary international panel of 25 experts in PKU and comorbidities frequently experienced by patients with PKU. Based on the outcomes of the first meeting, a set of statements were developed. During the second meeting, these statements were voted on for consensus generation (≥70% agreement), using a modified Delphi approach. RESULTS: A total of 37 consensus recommendations were developed across five areas that were deemed important in the management of adolescents and young adults with PKU: (1) general physical health, (2) mental health and neurocognitive functioning, (3) blood Phe target range, (4) PKU-specific challenges, and (5) transition to adult care. The consensus recommendations reflect the personal opinions and experiences from the participating experts supported with evidence when available. Overall, clinicians managing adolescents and young adults with PKU should be aware of the wide variety of PKU-associated comorbidities, initiating screening at an early age. In addition, management of adolescents/young adults should be a joint effort between the patient, clinical center, and parents/caregivers supporting adolescents with gradually gaining independent control of their disease during the transition to adulthood. CONCLUSIONS: A multidisciplinary international group of experts used a modified Delphi approach to develop a set of consensus recommendations with the aim of providing guidance and offering tools to clinics to aid with supporting adolescents and young adults with PKU.


Assuntos
Fenilcetonúrias , Criança , Adolescente , Adulto Jovem , Humanos , Adulto , Consenso , Fenilcetonúrias/diagnóstico , Programas de Rastreamento
8.
Am J Med Genet A ; 188(9): 2750-2759, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35543142

RESUMO

The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Retinose Pigmentar , Transtorno do Espectro Autista/genética , Heterozigoto , Humanos , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a RNA/genética , Retinose Pigmentar/genética
9.
Mol Genet Metab ; 133(4): 345-351, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116943

RESUMO

BACKGROUND: Pegvaliase is an enzyme substitution therapy that reduces blood phenylalanine (Phe) in adults with phenylketonuria (PKU), and often allows normalization of protein intake (≥0.8 g protein/kg). Here we examine the nutrition status of adults with PKU consuming a normal protein intake without medical food after being treated with pegvaliase for ≥1 year. METHODS: A cross-sectional study evaluating nutritional intake (3-day food record and food frequency questionnaire), anthropometrics, laboratory indices of protein, micronutrient, and essential fatty acid (EFA) status, and questionnaires evaluating food neophobia and Epicurean eating pleasure. RESULTS: Participants (n = 18, 61% female) started pegvaliase 4.9 ± 2.1 years prior to enrollment and were aged 38.2 ± 8.8 years with a mean BMI of 29.2 ± 4.1 kg/m2. Participants consumed a mean of 73.2 ± 17.6 g protein/d (1.0 ± 0.3 g/kg/d). Eleven participants had low blood Phe (<30 µmol/L) with adequate protein intake and normal indices of protein status. Micronutrient and EFA concentrations were normal except for mildly low vitamin D (<30 ng/mL, n = 12). Intakes of sodium, saturated fat, and added sugars exceeded recommendations for healthy adults, though mean diet quality was comparable to a US adult reference population. Lower food neophobia scores correlated with an increased aesthetic appreciation of food. However, 53% of participants self-reported having moderate (n = 6) to high (n = 3) food neophobia. DISCUSSION: Participants treated with pegvaliase consumed an unrestricted diet with adequate dietary protein and, overall, had normal protein, micronutrient, and fatty acid status. Despite low blood Phe, protein nutriture was not compromised. While nutritional deficiencies were not identified, diet quality was suboptimal and some participants reported food neophobia. Nutrition education remains an important component of care as patients adapt to a normal diet.


Assuntos
Dieta , Estado Nutricional/efeitos dos fármacos , Fenilalanina Amônia-Liase/uso terapêutico , Fenilcetonúrias/tratamento farmacológico , Adulto , Estudos Transversais , Proteínas Alimentares/administração & dosagem , Ácidos Graxos Essenciais , Feminino , Humanos , Masculino , Micronutrientes/sangue , Pessoa de Meia-Idade , Fenilalanina/sangue , Fenilcetonúrias/fisiopatologia , Proteínas Recombinantes/uso terapêutico , Inquéritos e Questionários
10.
Am J Hum Genet ; 100(2): 352-363, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132691

RESUMO

Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/genética , Adolescente , Animais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Deleção de Genes , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Polimorfismo de Nucleotídeo Único , Peixe-Zebra/genética
11.
Am J Hum Genet ; 98(5): 963-970, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27087320

RESUMO

Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.


Assuntos
Anormalidades Múltiplas/etiologia , Proteínas de Transporte/genética , Transtornos Cromossômicos/etiologia , Deficiências do Desenvolvimento/etiologia , Haploinsuficiência/genética , Mutação/genética , Animais , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 1 , Feminino , Humanos , Lactente , Masculino , Camundongos , Fenótipo , Prognóstico
12.
Genet Med ; 21(8): 1851-1867, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30546086

RESUMO

PURPOSE: Phenylketonuria (PKU) is a rare metabolic disorder that requires life-long management to reduce phenylalanine (Phe) concentrations within the recommended range. The availability of pegvaliase (PALYNZIQ™, an enzyme that can metabolize Phe) as a new therapy necessitates the provision of guidance for its use. METHODS: A Steering Committee comprising 17 health-care professionals with experience in using pegvaliase through the clinical development program drafted guidance statements during a series of face-to-face meetings. A modified Delphi methodology was used to demonstrate consensus among a wider group of health-care professionals with experience in using pegvaliase. RESULTS: Guidance statements were developed for four categories: (1) treatment goals and considerations prior to initiating therapy, (2) dosing considerations, (3) considerations for dietary management, and (4) best approaches to optimize medical management. A total of 34 guidance statements were included in the modified Delphi voting and consensus was reached on all after two rounds of voting. CONCLUSION: Here we describe evidence- and consensus-based recommendations for the use of pegvaliase in adults with PKU. The manuscript was evaluated against the Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument and is intended for use by health-care professionals who will prescribe pegvaliase and those who will treat patients receiving pegvaliase.


Assuntos
Fenilalanina Amônia-Liase/uso terapêutico , Fenilalanina/metabolismo , Fenilcetonúrias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Adolescente , Adulto , Criança , Relação Dose-Resposta a Droga , Humanos , Pessoa de Meia-Idade , Fenilalanina/genética , Fenilalanina Amônia-Liase/sangue , Fenilalanina Amônia-Liase/genética , Fenilcetonúrias/sangue , Fenilcetonúrias/genética , Fenilcetonúrias/patologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Adulto Jovem
13.
Genes Chromosomes Cancer ; 57(5): 223-230, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315962

RESUMO

Germ-line interstitial deletions involving the 14q32 chromosomal region, resulting in 14q32 deletion syndrome, are rare. DICER1 is a recently described cancer-predisposition gene located at 14q32.13. We report the case of a male child with a ∼5.8 Mbp 14q32.13q32.2 germ-line deletion, which included the full DICER1 locus. We reviewed available clinical and pathological material, and conducted genetic analyses. In addition to having congenital dysmorphic features, the child developed multiple DICER1 syndrome-related tumors before age 5 y: a pediatric cystic nephroma (pCN), a ciliary body medulloepithelioma (CBME), and a small lung cyst (consistent with occult pleuropulmonary blastoma Type I/Ir cysts seen in DICER1 mutation carriers). He also developed a cerebral spindle-cell sarcoma with myogenous differentiation. Our investigations revealed that the deletion encompassed 31 protein-coding genes. In addition to the germ-line DICER1 deletion, somatic DICER1 RNase IIIb mutations were found in the CBME (c.5437G > A, p.E1813K), pCN (c.5425G > A, p.G1809R), and sarcoma (c.5125G > A, p.D1709N). The sarcoma also harbored a somatic TP53 mutation: c.844C > T, p.R282W. Additional copy number alterations were identified in the CBME and sarcoma using an OncoScan array. Among the 8 cases with molecularly-defined 14q32 deletions involving DICER1 and for whom phenotypic information is available, our patient and one other developed DICER1-related tumors. Biallelic DICER1 mutations have not previously been reported to cause cerebral sarcoma, which now may be considered a rare manifestation of the DICER1 syndrome. Our study shows that DICER1-related tumors can occur in children with 14q32 deletions and suggests surveillance for such tumors may be warranted.


Assuntos
Deleção Cromossômica , RNA Helicases DEAD-box/genética , Síndromes Neoplásicas Hereditárias/genética , Ribonuclease III/genética , Criança , Cromossomos Humanos Par 14 , Mutação em Linhagem Germinativa , Humanos , Masculino , Deleção de Sequência
14.
Hum Mutat ; 39(4): 461-470, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29282788

RESUMO

Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.


Assuntos
DNA Mitocondrial/genética , Transtornos Heredodegenerativos do Sistema Nervoso , Hepatopatias , Proteínas de Membrana/genética , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Doenças do Sistema Nervoso Periférico , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias/diagnóstico , Hepatopatias/genética , Hepatopatias/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo
15.
Mol Genet Metab ; 123(3): 317-325, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29279279

RESUMO

Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Aspartato-Amônia Ligase/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Deficiência Intelectual/genética , Convulsões/genética , Arginina/genética , Asparagina/biossíntese , Aspartato-Amônia Ligase/deficiência , Sítios de Ligação/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Glutamina/genética , Glutamina/metabolismo , Homozigoto , Humanos , Masculino , Modelos Moleculares , Mutação , Irmãos
16.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194818

RESUMO

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/genética , Estudos de Associação Genética , Mutação/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Subunidades beta da Proteína de Ligação ao GTP/química , Humanos , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Fenótipo , Gravidez , Estrutura Terciária de Proteína
18.
Mol Genet Metab Rep ; 39: 101084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694233

RESUMO

Phenylketonuria (PKU) is a genetic disorder caused by deficiency of the enzyme phenylalanine hydroxylase (PAH), which results in phenylalanine (Phe) accumulation in the blood and brain, and requires lifelong treatment to keep blood Phe in a safe range. Pegvaliase is an enzyme-substitution therapy approved for individuals with PKU and uncontrolled blood Phe concentrations (>600 µmol/L) despite prior management. Aggregated results from the PRISM clinical trials demonstrated substantial and sustained reductions in blood Phe with a manageable safety profile, but also noted individual variation in time to and dose needed for a first response. This analysis reports longer-term aggregate findings and characterizes individual participant responses to pegvaliase using final data from the randomized trials PRISM-1 (NCT01819727) and PRISM-2 (NCT01889862), and the open-label extension study 165-304 (NCT03694353). In 261 adult participants with a mean of 36.6 months of pegvaliase treatment, 71.3%, 65.1%, and 59.4% achieved clinically significant blood Phe levels of ≤600, ≤360, and ≤ 120 µmol/L, respectively. Some participants achieved blood Phe reductions with <20 mg/day pegvaliase, although most required higher doses. Based on Kaplan-Meier analysis, median (minimum, maximum) time to first achievement of a blood Phe threshold of ≤600, ≤360, or ≤ 120 µmol/L was 4.4 (0.0, 54.0), 8.0 (0.0, 57.0), and 11.6 (0.0, 66.0) months, respectively. Once achieved, blood Phe levels remained below clinical threshold in most participants. Sustained Phe response (SPR), a new method described within for measuring durability of blood Phe response, was achieved by 85.5%, 84.7%, and 78.1% of blood Phe responders at blood Phe thresholds of ≤600, ≤360, or ≤ 120 µmol/L, respectively. Longer-term safety data were consistent with previous reports, with the most common adverse events (AEs) being arthralgia, injection site reactions, headache, and injection site erythema. The incidence of most AEs, including hypersensitivity AEs, was higher during the early treatment phase (≤6 months) than later during treatment. In conclusion, using data from three key pegvaliase clinical trials, participants treated with pegvaliase were able to reach clinically significant blood Phe reductions to clinical thresholds of ≤600, ≤360, or ≤ 120 µmol/L during early treatment, with safety profiles improving from early to sustained treatment. This study also supports the use of participant-level data and new ways of looking at durable blood Phe responses to better characterize patients' individual PKU treatment journeys.

19.
Am J Med Genet A ; 161A(4): 822-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23495222

RESUMO

Individuals with isolated terminal deletions of 8p have been well described in the literature, however, molecular characterization, particularly by microarray, of the deletion in most instances is lacking. The phenotype of such individuals falls primarily into two categories: those with cardiac defects, and those without. The architecture of 8p has been demonstrated to contain two inversely oriented segmental duplications at 8p23.1, flanking the gene, GATA4. Haploinsufficiency of this gene has been implicated in cardiac defects seen in numerous individuals with terminal 8p deletion. Current microarray technologies allow for the precise elucidation of the size and gene content of the deleted region. We present three individuals with isolated terminal deletion of 8p distal to the segmental duplication telomeric to GATA4. These individuals present with a relatively mild and nonspecific phenotype including mildly dysmorphic features, developmental delay, speech delay, and early behavior issues.


Assuntos
Deleção Cromossômica , Cardiopatias Congênitas/genética , Fenótipo , Anormalidades Múltiplas/genética , Adulto , Pré-Escolar , Cromossomos Humanos Par 8 , Fácies , Feminino , Fator de Transcrição GATA4/genética , Estudo de Associação Genômica Ampla , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Interface Usuário-Computador
20.
Am J Med Genet A ; 161A(5): 1110-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23610052

RESUMO

We present three patients with overlapping interstitial deletions of 19p13.3 identified by high resolution SNP microarray analysis. All three had a similar phenotype characterized by intellectual disability or developmental delay, structural heart abnormalities, large head relative to height and weight or macrocephaly, and minor facial anomalies. Deletion sizes ranged from 792 Kb to 1.0 Mb and included a common region arr [hg19] 19p13.3 (3,814,392-4,136,989), containing eight genes: ZFR2, ATCAY, NMRK2, DAPK3, EEF2, PIAS4, ZBTB7A, MAP2K2, and two non-coding RNA's MIR637 and SNORDU37. The patient phenotypes were compared with three previous single patient reports with similar interstitial 19p13.3 deletions and six additional patients from the DECIPHER and ISCA databases to determine if a common haploinsufficient phenotype for the region can be established.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 19/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA