RESUMO
ß-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable ß-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic ß-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.
Assuntos
Bactérias , beta-Manosidase , beta-Manosidase/química , Bactérias/metabolismo , Engenharia Genética , Biotecnologia/métodos , Mananas/química , BioengenhariaRESUMO
This study aimed to improve lipid and gamma-linolenic acid (GLA) production of an oleaginous fungus, Mucor plumbeus, through coculturing with Bacillus subtilis bacteria, optimising the environmental and nutritional culture conditions, and scaling them for batch fermentation. The maximum levels of biomass, lipid, fatty acid, and GLA in a 5 L bioreactor containing cellobiose and ammonium sulfate as the optimal carbon and nitrogen sources, respectively, achieved during the coculturing processes were 14.5 ± 0.4 g/L, 41.5 ± 1.3, 24 ± 0.8, and 20 ± 0.5%, respectively. This strategy uses cellobiose in place of glucose, decreasing production costs. The nutritional and abiotic factor results suggest that the highest production efficiency is achieved at 6.5 pH, 30 °C temperature, 10% (v/v) inoculum composition, 200 rpm agitation speed, and a 5-day incubation period. Interestingly, the GLA concentration of cocultures (20.0 ± 0.5%) was twofold higher than that of monocultures (8.27 ± 0.11%). More importantly, the GC chromatograms of cocultures indicated the presence of one additional peak corresponding to decanoic acid (5.32 ± 0.20%) that is absent in monocultures, indicating activation of silent gene clusters via cocultivation with bacteria. This study is the first to show that coculturing of Mucor plumbeus with Bacillus subtilis is a promising strategy with industrialisation potential for the production of GLA-rich microbial lipids and prospective biosynthesis of new products.
Assuntos
Bacillus , Ácido gama-Linolênico , Bacillus subtilis , Celobiose , Técnicas de Cocultura , Fermentação , Mucor , Estudos ProspectivosRESUMO
Mucor circinelloides WJ11, an oleaginous filamentous fungus, produces 36% lipid of its cell dry weight when cultured in a high C/N ratio medium, however, the yield of γ-linolenic acid (GLA) is insufficient to make it competitive with other plant sources. To increase the GLA content in M. circinelloides WJ11, this fungus was engineered by overexpression of its key genes such as Δ6-, Δ12-, and Δ9-desaturases involved in GLA production. Firstly, we tried to overexpress two Δ6-desaturase isozymes to determine which one played important role in GLA synthesis. Secondly, Δ6-and Δ12-desaturase were co-overexpressed to check whether linoleic acid (LA), the precursor for GLA synthesis, is a limiting factor or not. Moreover, we tried to explore the effects of simultaneous overexpression of Δ6-, Δ12-, and Δ9-desaturases on GLA production. Our results showed that overexpression (1 gene) of DES61 promoted higher GLA content (21% of total fatty acids) while co-overexpressing (2 genes) DES61 and DES12 and simultaneous overexpressing (3 genes) DES61, DES12, and DES91 increased the GLA production of engineered strains by 1.5 folds and 1.9 folds compared to the control strain, respectively. This study provided more insights into GLA biosynthesis in oleaginous fungi and laid a foundation for further increase in GLA production into fungus such as M. circinelloides.
RESUMO
In the current study, the purified ß-mannanase (Man/Cel5B) from Thermotoga maritima was immobilized on glutaraldehyde cross-linked chitosan beads. The immobilization of Man/Cel5B on chitosan beads was confirmed by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. After immobilization, the protein loading efficiency and immobilization yield were found to be 73.3% and 71.8%, respectively. The optimum pH for both free and immobilized enzymes was found to be pH 5.5. However, the optimum temperature of immobilized Man/Cel5B increased by 10 °C, from 85 °C (free Man/Cel5B) to 95 °C (Immobilized). The half-life of free and immobilized enzymes was found to be 7 h and 9 h, respectively, at 85 °C owing to the higher thermostability of immobilized Man/Cel5B. The increase in thermostability was also demonstrated by an increase in the energy of deactivation (209 kJmol-1) for immobilized enzyme compared to its native form (92 kJmol-1), at 85 °C. Furthermore, the immobilized Man/Cel5B displayed good operational stability as it retained 54% of its original activity after 15 repeated catalytic reactions concerning its free form.
Assuntos
Quitosana , Quitosana/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glutaral/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Temperatura , beta-Manosidase/metabolismoRESUMO
Thermotoga maritima (Tma) contains genes encoding various hyperthermophilic enzymes with great potential for industrial applications. The gene TM1752 in Tma genome has been annotated as cellulase gene encoding protein Cel5B. In this work, the gene TM1752 was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified and characterized. Interestingly, the purified enzyme exhibited specific activities of 416 and 215 U/mg on substrates galactomannan and carboxy methyl cellulose, which is the highest among thermophilic mannanases. However, the putative enzyme did not show sequence homology with any of the previously reported mannanases; therefore, the enzyme Cel5B was identified as bifunctional mannanase and cellulase and renamed as Man/Cel5B. Man/Cel5B exhibited maximum activity at 85°C and pH 5.5. This enzyme retained more than 50% activity after 5 h of incubation at 85°C, and retained up to 80% activity after incubated for 1 h at pH 5-8. The K m and V max of Man/Cel5B were observed to be 4.5 mg/mL galactomannan and 769 U/mg, respectively. Thin layer chromatography depicted that locust bean gum could be efficiently degraded to mannobiose, mannotriose, and mannooligosaccharides by Man/Cel5B. These characteristics suggest that Man/Cel5B has attractive applications for future food, feed, and biofuel industries.
RESUMO
Hyperthermophilic xylanases play a critical role in bioconversion from xylan to sugar in the process of biomass utilization. The discovery of new or improvement of existing xylanases based on directed evolution is expected to be an effective approach to meet the increasing demand of thermostable xylanases. In this work, a xylanase B gene (CTN_0623) from Thermotoga neapolitana (Tne) was cloned and xylanase B (herein named TnexlnB) was solubly expressed in E. coli with a high amount using a heat shock vector pHsh. TnexlnB showed the highest endo-ß-1,4-xylan hydrolase activity at 75 °C and pH 6.0. Additionally, 1 mM Mg2+, Ba2+ and Ca2+ improved the activity of TnexlnB by 31%, 37%, and 53%, respectively. The optimal temperature reached 85 °C by site-directed mutation at the last three helices of TnexlnB. Km and Vmax towards birchwood xylan were determined for both wide type and the best mutant, as follow: 1.09 mg/mL, 191.76 U/mg and 0.29 mg/mL, 376.42 U/mg, respectively. Further characterization highlighted good thermal stability (>80% of enzymatic activity after 1 h at 90 °C) for the best mutant, which made this enzyme suitable for biomass degradation at high temperature.
Assuntos
Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Temperatura Alta , Engenharia de Proteínas , Açúcares/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Biomassa , Biotransformação , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genéticaRESUMO
Skin darkening results as a consequence of the accumulation of skin pigment melanin. To combat this, the amplitude of skin lightening agents are commercially available, most of which inhibit melanin synthesis. Decolorization of melanin is an alternative method of skin lightening. In this study, we show that lignin peroxidase (LiP), an extracellular enzyme purified from Phanerochaete chrysosporium NK-1 isolated from a forest soil can effectively degrade and decolorize melanin in vitro. Decolorization conditions including pH, temperature, incubation time, enzyme concentration, and mediator addition were investigated to optimize the reaction conditions. The results indicate that pH 3, 40 °C, 15 IU/ml, and 10 h incubation were the optimal conditions for the decolorization of the melanin. The use of the mediator, veratryl alcohol was also found effective to enhance the efficacy of the melanin decolonization, with up to 92% decolorization. The scanning electron microscopy results showed void spaces on the treated melanin granules as compared to the untreated sample, indicating the degradation of melanin. Changes in the fingerprint region of the melanin were observed. Between wavenumbers 1500-500 cm-1, for example, the presence of new peaks in the treated melanin at 1513, 1464, and 1139 cm-1 CH2, CH3 bend and C-O-C stretch represented structural changes. A new peak at 2144 cm-1 (alkynyl C≡C stretch) was also detected in the decolorized melanin. The cytotoxicity study has shown that the treated melanin and LiP have low cytotoxic effects; however, the mediator of veratryl alcohol could result in high mortality which suggests that its use should be meticulously tested in formulating health and skincare products. The findings of the study suggest that LiP produced by Phanerochaete chrysosporium has the potential to be used in the medical and cosmetic industries, particularly for the development of biobased cosmetic whitening agents.