Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virus Res ; 347: 199420, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880336

RESUMO

Human alphaherpesvirus 1 (HSV-1) establishes life-long latency in sensory neurons in trigeminal ganglia (TG), brainstem neurons, and other CNS neurons. Two important segments of the brainstem were examined in this study: principal sensory nucleus of the spinal trigeminal tract (Pr5) because it receives direct afferent inputs from TG, and locus coeruleus (LC) because it is indirectly connected to Pr5 and LC sends axonal projections to cortical structures, which may facilitate viral spread from brainstem to the brain. The only viral gene abundantly expressed during latency is the latency associated transcript (LAT). Previous studies revealed 8-week old female C57Bl/6 mice infected with a LAT null mutant (dLAT2903) versus wild-type (wt) HSV-1 exhibit higher levels of senescence markers and inflammation in LC of females. New studies revealed 1-year old mice latently infected with wt HSV-1 or dLAT2903 contained differences in neuroinflammation and senescence in Pr5 and LC versus young mice. In summary, these studies confirm HSV-1 promotes neuro-inflammation in the brainstem, which may accelerate neurodegenerative disease.


Assuntos
Tronco Encefálico , Herpesvirus Humano 1 , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Latência Viral , Animais , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/genética , Tronco Encefálico/virologia , Tronco Encefálico/patologia , Camundongos , Feminino , Doenças Neuroinflamatórias/virologia , Doenças Neuroinflamatórias/patologia , Herpes Simples/virologia , Herpes Simples/patologia , Envelhecimento , Humanos , Infecção Latente/virologia , Gânglio Trigeminal/virologia , Modelos Animais de Doenças
2.
Antiviral Res ; 225: 105870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556059

RESUMO

Following acute human alphaherpesvirus 1 (HSV-1) infection of oral-facial mucosal surfaces, sensory neurons in trigeminal ganglia (TG) are important sites for life-long latency. Neurons in the central nervous system, including brainstem, also harbor viral genomes during latency. Periodically, certain cellular stressors trigger reactivation from latency, which can lead to recurrent HSV-1 disease: herpes labialis, herpes stromal keratitis, and encephalitis for example. Activation of the glucocorticoid receptor (GR) by stressful stimuli enhances HSV-1 gene expression, replication, and explant-induced reactivation. GR and certain stress-induced Krüppel like factors (KLF) cooperatively transactivate cis-regulatory modules (CRM) that drive expression of viral transcriptional regulatory proteins (ICP0, ICP4, and ICP27). These CRMs lack GR response elements (GRE); however, specificity protein 1 (Sp1) binding sites are crucial for GR and KLF15 or KLF4 mediated transactivation. Hence, we tested whether Sp1 or Sp3 regulate viral replication and transactivation of the ICP0 promoter. During early stages of explant-induced reactivation from latency, the number of Sp3+ TG neurons were significantly higher relative to TG from latently infected mice. Conversely, Sp1+ TG neurons were only increased in females, but not male mice, during explant-induced reactivation. Sp1 siRNA significantly reduced HSV-1 replication in cultured mouse (Neuro-2A) and monkey (CV-1) cells. Mithramycin A, an antibiotic that has anti-tumor activity preferentially interacts with GC-rich DNA, including Sp1 binding sites, significantly reduced HSV-1 replication indicating it has antiviral activity. GR and Sp1 or Sp3 transactivated the HSV-1 ICP0 promoter in Neuro-2A and CV-1 cells confirming these transcription factors enhance viral replication and gene expression.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Plicamicina/análogos & derivados , Feminino , Humanos , Camundongos , Animais , Herpesvirus Humano 1/genética , Receptores de Glucocorticoides/metabolismo , Ativação Viral , Latência Viral/genética , Proteínas Imediatamente Precoces/genética , Antibacterianos , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA