Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780087

RESUMO

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Assuntos
Giro Denteado , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Sacarose , Animais , Masculino , Ratos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memória/fisiologia , Memória/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , RNA Mensageiro/metabolismo , Autoadministração , Sacarose/administração & dosagem
2.
Neuroendocrinology ; 111(12): 1187-1200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33291119

RESUMO

INTRODUCTION: Repeated traumatic events result in long-lasting neuropsychiatric ailments, including neuroendocrine imbalances. Neuropeptide Y (NPY) in the arcuate nucleus (Arc) is an important orexigenic peptide. However, the molecular underpinnings of its dysregulation owing to traumatic brain injury remain unknown. METHODS: Rats were subjected to repeated mild traumatic brain injury (rMTBI) using the closed head weight-drop model. Feeding behavior and the regulatory epigenetic parameters of NPY expression were measured at 48 h and 30 days post-rMTBI. Further, sodium butyrate (SB), a pan-histone deacetylase (HDAC) inhibitor, was administered to examine whether histone deacetylation is involved in NPY expression post-rMTBI. RESULTS: The rMTBI attenuated food intake, which was coincident with a decrease in NPY mRNA and protein levels in the Arc post-rMTBI. Further, rMTBI also reduced the mRNA levels of the cAMP response element-binding protein (CREB) and CREB-binding protein (CBP) and altered the mRNA levels of the various isoforms of the HDACs. Concurrently, the acetylated histone 3-lysine 9 (H3-K9) levels and the binding of CBP at the NPY promoter in the Arc of the rMTBI-exposed rats were reduced. However, the treatment with SB corrected the rMTBI-induced deficits in the H3-K9 acetylation levels and CBP occupancy at the NPY promoter, restoring both NPY expression and food intake. CONCLUSIONS: These findings suggest that histone deacetylation at the NPY promoter persistently controls NPY function in the Arc after rMTBI. This study also demonstrates the efficacy of HDAC inhibitors in mitigating trauma-induced neuroendocrine maladaptations in the hypothalamus.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Animal/fisiologia , Concussão Encefálica/metabolismo , Ácido Butírico/farmacologia , Comportamento Alimentar/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Neuropeptídeo Y/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Concussão Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Neuropeptídeo Y/efeitos dos fármacos , Ratos
3.
Addict Biol ; 24(1): 51-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29193459

RESUMO

Although chronic nicotine administration does not affect memory, its withdrawal causes massive cognitive deficits. The underlying mechanisms, however, have not been understood. We test the role of cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide known for its procognitive properties, in this process. The mice on chronic nicotine treatment/withdrawal were subjected to novel object recognition task. The capability of the animal to discriminate between the novel and familiar objects was tested and represented as discrimination index (DI); reduction in the index suggested amnesia. Nicotine for 49 days had no effect on DI, but 8-hour withdrawal caused a significant reduction, followed by full recovery at 24-hour withdrawal timepoint. Bilateral CART infusion in dorsal hippocampus rescued deficits in DI at 8-hours, whereas CART-antibody infusion into the dorsal hippocampus attenuated the recovery at 24-hours. Commensurate changes were observed in the CART as well as CART mRNA profiles in the hippocampus. CART mRNA expression and the peptide immunoreactivity did not change significantly following chronic nicotine treatment. However, there was a significant reduction at 8-hour withdrawal, followed by a drastic increase in CART immunoreactivity as well as CART mRNA at 24-hour withdrawal, compared with 8-hour withdrawal. Distinct α7-nicotinic receptor immunoreactivity was detected on the hippocampal CART neurons, suggesting cholinergic inputs. An increase in the synaptophysin immunoreactive elements around CART cells in the dentate gyrus, cornu ammonis 3 and subiculum at 24-hour post-withdrawal timepoint suggested neuronal plasticity. CART circuit dynamics in the hippocampus seems to modulate short-term memory associated with nicotine withdrawal.


Assuntos
Proteínas do Tecido Nervoso/farmacologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Reconhecimento Psicológico/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/psicologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/genética , Sinaptofisina/efeitos dos fármacos , Sinaptofisina/metabolismo
4.
Neurobiol Dis ; 106: 101-109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28663119

RESUMO

Minimal traumatic brain injury (MTBI) often transforms into chronic neuropsychiatric conditions including anxiety, the underlying mechanisms of which are largely unknown. In the present study, we employed the closed-head injury paradigm to induce MTBI in rats and examined whether DNA methylation can explain long-term changes in the expression of the brain-derived neurotrophic factor (BDNF) in the amygdala as well as trauma-induced anxiety-like behaviors. The MTBI caused anxiety-like behaviors and altered the expression of DNA methyltransferase (DNMT) isoforms (DNMT1, DNMT3a, and DNMT3b) and factors involved in DNA demethylation such as the growth arrest and DNA damage 45 (GADD45a and GADD45b). After 30days of MTBI, the over-expression of DNMT3a and DNMT3b corresponded to heightened DNMT activity, whereas the mRNA levels of GADD45a and GADD45b were declined. The methylated cytosine levels at the BDNF promoters (Ip, IVp and IXp) were increased in the amygdala of the trauma-induced animals; these coincided negatively with the mRNA levels of exon IV and IXa, but not of exon I. Interestingly, treatment with 5-azacytidine, a pan DNMT inhibitor, normalized the MTBI-induced DNMT activity and DNA hypermethylation at exon IVp and IXp. Furthermore, 5-azacytidine also corrected the deficits in the expression of exons IV and IXa and reduced the anxiety-like behaviors. These results suggest that the DNMT-mediated DNA methylation at the BDNF IVp and IXp might be involved in the regulation of BDNF gene expression in the amygdala. Further, it could also be related to MTBI-induced anxiety-like behaviors via the regulation of synaptic plasticity.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/psicologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metilação de DNA , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/genética , Azacitidina/farmacologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Proteínas de Ciclo Celular/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos Wistar
5.
Funct Integr Genomics ; 16(1): 57-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26432787

RESUMO

Alcaligenes sp. HPC 1271 demonstrated antibacterial activity against multidrug resistant bacteria, Enterobacter sp., resistant to sulfamethoxazole, ampicillin, azithromycin, and tetracycline, as well as against Serratia sp. GMX1, resistant to the same antibiotics with the addition of netilmicin. The cell-free culture supernatant was analyzed for possible antibacterials by HPLC, and the active fraction was further identified by LC-MS. Results suggest the production of tunicamycin, a nucleoside antibiotic. The draft genome of this bacterial isolate was analyzed, and the 4.2 Mb sequence data revealed six secondary metabolite-producing clusters, identified using antiSMASH platform as ectoine, butyrolactone, phosphonate, terpene, polyketides, and nonribosomal peptide synthase (NRPS). Additionally, the draft genome demonstrated homology to the tunicamycin-producing gene cluster and also defined 30 ORFs linked to protein secretion that could also play a role in the antibacterial activity observed. Gene expression analysis demonstrated that both NRPS and dTDP-glucose 4,6-dehydratase gene clusters are functional and could be involved in antibacterial biosynthesis.


Assuntos
Alcaligenes/metabolismo , Antibiose , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Alcaligenes/genética , Alcaligenes/isolamento & purificação , Diamino Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Fases de Leitura Aberta , Organofosfonatos/metabolismo , Peptídeo Sintases/metabolismo , Policetídeos/metabolismo , Serratia/efeitos dos fármacos , Terpenos/metabolismo , Tunicamicina/genética , Tunicamicina/metabolismo
6.
Appl Microbiol Biotechnol ; 100(2): 903-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403923

RESUMO

The Arthrobacter sp. strain AK-YN10 is an s-triazine pesticide degrading bacterium isolated from a sugarcane field in Central India with history of repeated atrazine use. AK-YN10 was shown to degrade 99 % of atrazine in 30 h from media supplemented with 1000 mg L(-1) of the herbicide. Draft genome sequencing revealed similarity to pAO1, TC1, and TC2 catabolic plasmids of the Arthrobacter taxon. Plasmid profiling analyses revealed the presence of four catabolic plasmids. The trzN, atzB, and atzC atrazine-degrading genes were located on a plasmid of approximately 113 kb.The flagellar operon found in the AK-YN10 draft genome suggests motility, an interesting trait for a bioremediation agent, and was homologous to that of Arthrobacter chlorophenolicus. The multiple s-triazines degradation property of this isolate makes it a good candidate for bioremediation of soils contaminated by s-triazine pesticides.


Assuntos
Arthrobacter/genética , Arthrobacter/metabolismo , Atrazina/metabolismo , Biodegradação Ambiental , Herbicidas/metabolismo , Microbiologia do Solo , Arthrobacter/efeitos dos fármacos , Arthrobacter/isolamento & purificação , Atrazina/farmacologia , Sequência de Bases , Genoma Bacteriano , Índia , Plasmídeos , Reação em Cadeia da Polimerase , Saccharum/microbiologia
7.
Appl Microbiol Biotechnol ; 99(23): 10249-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26239066

RESUMO

Strategies for bioremediation of atrazine, a pesticide commonly polluting groundwater in low concentrations, were studied in two boreal nonagricultural soils. Atrazine was not mineralized in soil without bioremediation treatments. In biostimulation treatment with molasses, up to 52% of atrazine was mineralized at 10 °C, even though the degradation gene copy numbers did not increase. Incubations with radioactively labeled atrazine followed by microautoradiographic analysis revealed that bioremediation strategies increased the relative proportion of active degraders from 0.3 up to 1.9% of the total bacterial count. These results indicate that atrazine degradation might not solely be facilitated by atzA/trzN-atzB genes. In combined biostimulation treatment using citrate or molasses and augmentation with Pseudomonas citronellolis ADP or Arthrobacter aurescens strain TC1, up to 76% of atrazine was mineralized at 30 °C, and the atrazine degradation gene numbers increased up to 10(7) copies g(-1) soil. Clone libraries from passive samplers in groundwater monitoring wells revealed the presence of phylogenetic groups formerly shown to include atrazine degraders, and the presence of atrazine degradation genes atzA and atzB. These results show that the mineralization of low concentrations of atrazine in the groundwater zone at low temperatures is possible by bioremediation treatments.


Assuntos
Atrazina/metabolismo , Água Subterrânea/química , Praguicidas/metabolismo , Microbiologia do Solo , Poluentes da Água/metabolismo , Biodegradação Ambiental , Biotransformação , Micrococcaceae/metabolismo , Pseudomonas/metabolismo , Temperatura
8.
J Environ Manage ; 139: 208-16, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24721596

RESUMO

Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Atrazina/análise , Bactérias/genética , Biodegradação Ambiental , DNA Bacteriano/análise , Herbicidas/análise , Reação em Cadeia da Polimerase , Poluentes do Solo/análise , Triazinas/análise
9.
Neuropeptides ; 102: 102380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690194

RESUMO

Croaking is a unique component of reproductive behaviour in amphibians which plays a key role in intraspecies communication and mate evaluation. While gonadal hormones are known to induce croaking, central regulation of sound production is less studied. Croaking is a dramatic, transient activity that sets apart an animal from non-croaking individuals. Herein, we aim at examining the profile of the neuropeptide cocaine- and amphetamine-regulated transcript (CART) in actively croaking and non-croaking frog Microhyla nilphamariensis. In anurans, this peptide is widely expressed in the areas inclusive of acoustical nuclei as well as areas relevant to reproduction. CART immunoreactivity was far more in the preoptic area (POA), anteroventral tegmentum (AV), ventral hypothalamus (vHy), pineal (P) and pituitary gland of croaking frog compared to non-croaking animals. On similar lines, tissue fragments collected from the mid region of the brain inclusive of POA, vHy, AV, pineal and pituitary gland of croaking frog showed upregulation of CART mRNA. However, CART immunoreactivity in the neuronal perikarya of raphe (Ra) was completely abolished during croaking activity. The data suggest that CART signaling in the brain may be an important player in mediating croaking behaviour in the frog.


Assuntos
Cocaína , Neuropeptídeos , Humanos , Animais , Masculino , Proteínas do Tecido Nervoso/metabolismo , Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Reprodução , Anuros/metabolismo , Anfetaminas/metabolismo , Cocaína/metabolismo , Cocaína/farmacologia
10.
Mol Neurobiol ; 59(9): 5426-5442, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35705787

RESUMO

Neuroadaptations in neurocircuitry of reward memories govern the persistent and compulsive behaviors. The study of the role of hippocampus in processing of reward memory and its retrieval is critical to our understanding of addiction and relapse. The aim of this study is to probe the epigenetic mechanisms underlying reward memory in the frame of dentate gyrus (DG). To that end, the rats conditioned to the food baited arm of a Y-maze and subjected to memory probe trial. The hippocampus of conditioned rats displayed higher mRNA levels of Ten-eleven translocase 1 (Tet1) and brain-derived neurotrophic factor (Bdnf) after memory probe trial. The DNA hydroxymethylation and TET1 occupancy at the Bdnf promoters showed concomitant increase. Stereotactic administration of Tet1 siRNA in the DG before and after conditioning inhibited reward memory formation and recall, respectively. Administration of Tet1 siRNA impaired the reward memory recall that was reinstated following administration of exogenous BDNF peptide or after wash-off period of 8 days. Infusion of a MEK/ERK inhibitor, U0126 in the DG inhibited reward memory retrieval. The TET1-induced DNA demethylation at the Bdnf promoters raised BDNF levels in the hippocampus, thereby setting the stage for reward memory retrieval. The study underscores the causative role of TET1 in the DG for reward memory formation and recall.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dioxigenases , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Desmetilação do DNA , Giro Denteado/metabolismo , Hipocampo/metabolismo , RNA Interferente Pequeno , Ratos , Recompensa
11.
Neurosci Lett ; 786: 136783, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35810962

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) peptide is a multifaceted neuropeptide involved in several physiological functions including appetite and reproduction. While studies in mammals, aves and fishes suggest evolutionary conserved role of CART, the information in amphibian is scanty. We have investigated the reproductive phase related variations of CART in the brain of adult male Microhyla ornata. Seasonal changes in the expression of CART peptide were noticed in the brain and pituitary of M. ornata. Significant differences were observed in the nucleus infundibularis ventralis (NIV), epiphysis (E), anteroventral tegmental region (AV), raphe nucleus (Ra) of the brain and pars intermedia (PI), pars distalis (PD) of the pituitary. Compared to the pre-breeding and post-breeding seasons, increase in CART immunoreactivity was seen in E, NIV, AV, Ra of brain and PI, PD of pituitary gland of animals collected during breeding season. Similarly, highest mRNA levels of CART were also observed in the breeding season in the middle region of brain that includes hypothalamus and pituitary gland. Variation in the levels of CART peptide and mRNA in the brain of M. ornata suggests its conserved role in seasonal control of appetite and reproduction.


Assuntos
Cocaína , Neuropeptídeos , Anfetaminas , Animais , Encéfalo/metabolismo , Masculino , Mamíferos , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Hipófise/metabolismo , RNA Mensageiro/metabolismo , Reprodução/fisiologia
12.
Mol Neurobiol ; 59(2): 890-915, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797522

RESUMO

Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.


Assuntos
Sinais (Psicologia) , Colículos Superiores , Animais , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Ratos , Recompensa
13.
Neurosci Lett ; 740: 135409, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045276

RESUMO

Neuropeptide Y(NPY) is known to play a pivotal role in various physiological functions including appetite and reproduction. While studies in mammals, fishes and reptiles suggest a temporal and evolutionary conserved role of NPY, the information in amphibian is scanty. We have investigated the reproductive phase related variations of NPY in the brain of Microhyla ornata (M. ornata), using immunohistochemistry and reverse transcription quantitative PCR (RT-qPCR). The highest expression of NPY peptide was observed in the preoptic area (Poa), nucleus infundibularis ventralis (NIV) and nucleus reticularis isthmi (NRIS) of M. ornata in breeding season compared to pre-breeding as well as post-breeding season. In parallel, highest mRNA levels of NPY were also observed in the breeding season in the middle region of brain that includes hypothalamus of M. ornata. Variation in the levels of NPY peptide and mRNA levels in the brain of M. ornata point towards seasonal control of appetite and reproduction.


Assuntos
Química Encefálica/fisiologia , Bufonidae/fisiologia , Neuropeptídeo Y/metabolismo , Reprodução/fisiologia , Animais , Apetite , Imuno-Histoquímica , Masculino , Neuropeptídeo Y/genética , Área Pré-Óptica/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Estações do Ano
14.
Mol Neurobiol ; 58(3): 1162-1184, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33099744

RESUMO

The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.


Assuntos
Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Epigênese Genética , Hipocampo/enzimologia , Estresse Oxidativo/genética , Superóxido Dismutase/metabolismo , Animais , Azacitidina/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Regulação para Baixo , Inativação Gênica , Masculino , Modelos Biológicos , Degeneração Neural/complicações , Degeneração Neural/patologia , Células PC12 , Regiões Promotoras Genéticas/genética , Ratos , Ratos Wistar , DNA Metiltransferase 3B
15.
Prog Neurobiol ; 202: 102048, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798614

RESUMO

Reward induces activity-dependant gene expression and synaptic plasticity-related changes. Lysine-specific histone demethylase 1 (LSD1), a key enzyme driving histone modifications, regulates transcription in neural circuits of memory and emotional behavior. Herein, we focus on the role of LSD1 in modulating the expression of brain derived neurotrophic factor (BDNF), the master regulator of synaptic plasticity, in the lateral hypothalamus-medial forebrain bundle (LH-MFB) circuit during positive reinforcement. Rats, trained for intracranial self-stimulation (ICSS) via an electrode-cannula assembly in the LH-MFB area, were assayed for lever press activity, epigenetic parameters and dendritic sprouting. LSD1 expression and markers of synaptic plasticity like BDNF and dendritic arborization in the LH, showed distinct increase in conditioned animals. H3K4me2 levels at Bdnf IV and Bdnf IX promoters were increased in ICSS-conditioned rats, but H3K9me2 was decreased. While intra LH-MFB treatment with pan Lsd1 siRNA inhibited lever press activity, analyses of LH tissue showed reduction in BDNF expression and levels of H3K4me2 and H3K9me2. However, co-administration of BDNF peptide restored lever press activity mitigated by Lsd1 siRNA. BDNF expression in LH, driven by LSD1 via histone demethylation, may play an important role in reshaping the reward pathway and hold the key to decode the molecular basis of addiction.


Assuntos
Região Hipotalâmica Lateral , Feixe Prosencefálico Mediano , Animais , Fator Neurotrófico Derivado do Encéfalo , Histona Desmetilases , RNA Interferente Pequeno , Ratos , Ratos Wistar , Recompensa
16.
Neurosci Res ; 155: 34-42, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31260697

RESUMO

Mild traumatic brain injury (MTBI) results in persistent deficits in the cognitive and emotive abilities governed by the mesocorticolimbic (MCL) neurocircuitry. In this study, we observed regional variations in the mitochondrial DNA copy number (mtDNAcn) in the MCL neurocircuitry. Although repeated MTBI (rMTBI) is known to cause mitochondrial dysfunction, the persistent changes in the mtDNAcn and its manifestations in 16S rRNA levels in the MCL neurocircuitry have not been investigated. Herein, we employed the closed head weight drop paradigm to induce rMTBI in rats. We analyzed the mtDNAcn and 16S rRNA levels in eight regions of the MCL neurocircuitry 48 h and 30 days after the rMTBI. The mtDNAcn in the prefrontal cortex, cortex, hippocampus, and ventral tegmental area (VTA) of the rMTBI-exposed rats was decreased at both the time points. Although the mtDNAcn was reduced in hypothalamus and amygdala at 48 h, it was increased at 30 days post rMTBI. The 16S rRNA levels and mtDNAcn were altered in all the regions, with the exception of bed nucleus of stria terminalis and the VTA. Moreover, the rMTBI did not affect the mtDNAcn and 16S rRNA levels in nucleus accumbens. These results suggest that the repetitive trauma induces persistent changes in the mtDNAcn which are manifested as aberrations in mitochondrial transcription in the brain areas crucial for emotion and cognition.


Assuntos
Concussão Encefálica/fisiopatologia , DNA Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Encéfalo/fisiopatologia , Córtex Cerebral/fisiopatologia , Variações do Número de Cópias de DNA/fisiologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos
17.
Neuropeptides ; 74: 1-10, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826125

RESUMO

Neuropeptide Y (NPY) is involved in sex-specific behavioural processes in vertebrates. NPY integrates energy balance and reproduction in mammals. However, the relevance of NPY in reproduction of lower vertebrates is understudied. In the present study, we have investigated neuroanatomical distribution and sex-specific differences of NPY in the brain of Microhyla ornata using immunohistochemistry and quantitative real time PCR. NPY is widely distributed throughout the brain of M. ornata. We observed NPY immunoreactivity in the cells of the nucleus accumbens, striatum pars dorsalis, dorsal pallium, medial pallium, ventral pallium, bed nucleus of stria terminalis, preoptic nucleus, infundibular region, median eminence and pituitary gland of adult M. ornata. A higher number of NPY- immunoreactive cells were observed in the preoptic nucleus (p < .01), nucleus infundibularis ventralis (p < .001) and anteroventral tegmental nucleus (p < .001) of the female as compared to that of the male frog. Real-Time PCR revealed higher mRNA levels of NPY in the female as compared to male frogs in the mid-brain region that largely contains the hypothalamus. Sexual dimorphism of NPY expression in M. ornata suggests that NPY may be involved in the reproductive physiology of anurans.


Assuntos
Anuros/metabolismo , Encéfalo/metabolismo , Neuropeptídeo Y/metabolismo , Caracteres Sexuais , Animais , Feminino , Imuno-Histoquímica , Masculino , Neurônios/metabolismo
18.
J Biosci ; 44(5)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719229

RESUMO

Traumatic brain injuries (TBI) manifest into post-traumatic stress disorders such as anxiety comorbid with gut ailments. The perturbations in gut microbial communities are often linked to intestinal and neuropsychological disorders. We have previously reported anxiety and abnormalities in gut function in mild TBI (MTBI)-exposed rats. The current study demonstrates the changes in gut microbiome of MTBI-exposed animals and discusses its implications in intestinal health and behaviours. The rats were subjected to repeated MTBI (rMTBI) and microbial composition in jejunum was examined after 6 h, 48 h and 30 days of rMTBI. Significant reduction in bacterial diversity was observed in the rMTBI-exposed animals at all the time points. Principal coordinate analysis based on weighted UniFrac distances indicated substantial differences in gut microbial diversity and abundances in rMTBI-exposed animals as compared to that in healthy controls. The abundance of Proteobacteria increased dramatically with reciprocal decrease in Firmicutes after rMTBI. At the genus level, Helicobacter, Lactobacillus, Campylobacter, and Streptococcus were found to be differentially abundant in the jejunum of rMTBI-exposed rats as compared to sham controls indicating profound dysbiosis from the healthy state. Furthermore, substantial depletion in butyrate-producing bacterial communities was observed in rMTBI-exposed animals. These results suggest that the traumatic stress alters the gut microbiome with possible implications in gut health and neuropsychopathology.


Assuntos
Lesões Encefálicas Traumáticas/microbiologia , Jejuno/microbiologia , Animais , Masculino , Ratos , Ratos Wistar
19.
Brain Res ; 1711: 183-192, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664848

RESUMO

Impaired attention and memory represent some of the major long-term consequences of brain injuries. However, little is known about the underlying molecular mechanisms of brain trauma-induced cognitive decline. Histone deacetylases (HDACs) in the hippocampus are believed to impact learning and memory. Herein, we have induced repeated mild traumatic brain injury (rMTBI) in rats by using weight-drop paradigm, examined the recognition memory using novel object recognition task, and assessed the HDAC activities in the hippocampus post 48 h and 30 days of rMTBI. The recognition memory was significantly compromised in the rMTBI-exposed rats at both the time points. The rMTBI increased mRNA levels of different isoforms of HDACs (HDAC2-5 and HDAC11) at different time points coupled with rise in nuclear and cytosolic HDAC activities. However, a mild decrease in HDAC8 mRNA levels was observed at 30 days time point. As a corollary, rMTBI also caused persistent decrease in the levels of acetylated histone H3-Lys 9 (H3-K9ac) in promoter region of cocaine- and amphetamine-regulated transcript (CART) gene with concurrent decline in CART mRNA and peptide (CARTp) levels. Furthermore, the treatment with trichostatin A (TSA), a pan HDAC inhibitor, restored the rMTBI-induced deficits in recognition memory and HDAC activities with commensurate changes in the H3-K9ac and CART mRNA levels. Together, these results suggest that rMTBI may trigger persistent changes in HDAC-mediated histone acetylation at the CART gene promoter culminating into deficits in learning and memory. Further, the present study also identifies therapeutic potential of HDAC inhibitors in rescuing MTBI-induced cognitive deficits.


Assuntos
Concussão Encefálica/fisiopatologia , Hipocampo/enzimologia , Histona Desacetilases/metabolismo , Aprendizagem/fisiologia , Transtornos da Memória/enzimologia , Acetilação , Animais , Concussão Encefálica/metabolismo , Lesões Encefálicas Traumáticas/complicações , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Ratos , Ratos Wistar , Reconhecimento Psicológico , Lobo Temporal/metabolismo
20.
J Comp Neurol ; 527(6): 1070-1101, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30370602

RESUMO

Thyrotropin-releasing hormone (TRH) regulates the hypothalamic-pituitary-thyroid axis in mammals and also regulates prolactin secretion, directly or indirectly via tuberoinfundibular dopamine neurons. Although TRH is abundantly expressed in teleost brain and believed to mediate neuronal communication, empirical evidence is lacking. We analyzed pro-TRH-mRNA expression, mapped TRH-immunoreactive elements in the brain and pituitary, and explored its role in regulation of hypophysiotropic dopamine (DA) neurons in the catfish, Clarias batrachus. Partial pro-TRH transcript from C. batrachus transcriptome showed six TRH progenitors repeats. Quantitative real-time polymerase chain reaction (qRT-PCR) identified pro-TRH transcript in a number of different brain regions and immunofluorescence showed TRH-immunoreactive cells/fibers in the olfactory bulb, telencephalon, preoptic area (POA), hypothalamus, midbrain, hindbrain, and spinal cord. In the pituitary, TRH-immunoreactive fibers were seen in the neurohypophysis, proximal pars distalis, and pars intermedia but not rostral pars distalis. In POA, distinct TRH-immunoreactive cells/fibers were seen in nucleus preopticus periventricularis anterior (NPPa) that demonstrated a significant increase in TRH-immunoreactivity when collected during preparatory and prespawning phases, reaching a peak in the spawning phase. Although tyrosine hydroxylase (TH)-immunoreactive neurons in NPPa are hypophysiotropic, none of the TRH-immunoreactive neurons in NPPa accumulated neuronal tracer DiI following implants into the pituitary. However, 87 ± 1.6% NPPa TH-immunoreactive neurons were surrounded by TRH-immunoreactive axons that were seen in close proximity to the somata. Superfused POA slices treated with TRH (0.5-2 µM) significantly reduced TH concentration in tissue homogenates and the percent TH-immunoreactive area in the NPPa. We suggest that TRH in the brain of C. batrachus regulates a range of physiological functions but in particular, serves as a potential regulator of hypophysiotropic DA neurons and reproduction.


Assuntos
Encéfalo/fisiologia , Peixes-Gato/fisiologia , Neurônios Dopaminérgicos/fisiologia , Hipófise/fisiologia , Hormônio Liberador de Tireotropina/metabolismo , Animais , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA