Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 131(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880547

RESUMO

Plasmodesmata are cytoplasmic communication channels that are vital for the physiology and development of all plants. They facilitate the intercellular movement of various cargos - ranging from small molecules, such as sugars, ions and other essential nutrients and chemicals, to large complex molecules, such as proteins and different types of RNA species - by bridging neighboring cells across their cell walls. Structurally, an individual channel consists of the cytoplasmic sleeve that is formed between the endoplasmic reticulum and the plasma membrane leaflets. Plasmodesmata are highly versatile channels; they vary in number and structure, and undergo constant adjustments to their permeability in response to many internal and external cues. In this Cell Science at a Glance article and accompanying poster, we provide an overview of plasmodesmata form and function, with highlights on their development and variation, associated components and mobile factors. In addition, we present methodologies that are currently used to study plasmodesmata-mediated intercellular communication.


Assuntos
Fenômenos Fisiológicos Vegetais , Plasmodesmos/fisiologia , Animais , Comunicação Celular , Células Vegetais/fisiologia , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 25(6): 2315-29, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23749844

RESUMO

In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell-cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell-cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell-cell coupling requires an enhanced desease resistance1- and nonexpressor of pathogenesis-related genes1-dependent SA pathway in conjunction with the regulator of plasmodesmal gating Plasmodesmata-located protein5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Doenças das Plantas/genética , Plasmodesmos/efeitos dos fármacos , Ácido Salicílico/farmacologia , Anti-Infecciosos/farmacologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Bactérias/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/genética , Plasmodesmos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
3.
J Exp Bot ; 65(22): 6337-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262225

RESUMO

To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways.


Assuntos
Meio Ambiente , Desenvolvimento Vegetal , Plasmodesmos/metabolismo , Transdução de Sinais , Estresse Fisiológico , Permeabilidade
4.
Plant Cell ; 23(9): 3353-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21934146

RESUMO

Plasmodesmata (PD) are thought to play a fundamental role in almost every aspect of plant life, including normal growth, physiology, and developmental responses. However, how specific signaling pathways integrate PD-mediated cell-to-cell communication is not well understood. Here, we present experimental evidence showing that the Arabidopsis thaliana plasmodesmata-located protein 5 (PDLP5; also known as HOPW1-1-INDUCED GENE1) mediates crosstalk between PD regulation and salicylic acid-dependent defense responses. PDLP5 was found to localize at the central region of PD channels and associate with PD pit fields, acting as an inhibitor to PD trafficking, potentially through its capacity to modulate PD callose deposition. As a regulator of PD, PDLP5 was also essential for conferring enhanced innate immunity against bacterial pathogens in a salicylic acid-dependent manner. Based on these findings, a model is proposed illustrating that the regulation of PD closure mediated by PDLP5 constitutes a crucial part of coordinated control of cell-to-cell communication and defense signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Comunicação Celular , Imunidade Vegetal , Plasmodesmos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Morte Celular , Mutação , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Transdução de Sinais
5.
Trends Plant Sci ; 26(8): 770-779, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685810

RESUMO

Successful plant organ development depends on well-coordinated intercellular communication between the cells of the organ itself, as well as with surrounding cells. Intercellular signals often move via the symplasmic pathway using plasmodesmata. Intriguingly, brief periods of symplasmic isolation may also be necessary to promote organ differentiation and functionality. Recent findings suggest that symplasmic isolation of a subset of parental root cells and newly forming lateral root primordia (LRPs) plays a vital role in modulating lateral root development and emergence. In this opinion article we discuss how two symplasmic domains may be simultaneously established within an LRP and its overlying cells, and the significance of plasmodesmata in this process.


Assuntos
Arabidopsis , Diferenciação Celular , Raízes de Plantas/genética , Plasmodesmos
6.
Methods Cell Biol ; 160: 99-117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896335

RESUMO

Plasmodesmata are membrane-lined cytoplasmic passageways that facilitate the movement of nutrients and various types of molecules between cells in the plant. They are highly dynamic channels, opening or closing in response to physiological and developmental stimuli or environmental challenges such as biotic and abiotic stresses. Accumulating evidence supports the idea that such dynamic controls occur through integrative cellular mechanisms. Currently, a few fluorescence-based methods are available that allow monitoring changes in molecular movement through plasmodesmata. In this chapter, following a brief introduction to those methods, we provide a detailed step-by-step protocol for the Drop-ANd-See (DANS) assay, which is advantageous when it is desirable to measure plasmodesmal permeability non-invasively, in situ and in real-time. We discuss the experimental conditions one should consider to produce reliable and reproducible DANS results along with troubleshooting ideas.


Assuntos
Técnicas Citológicas/métodos , Plasmodesmos/metabolismo , Arabidopsis/metabolismo , Bioensaio , Transporte Biológico , Corantes/metabolismo , Fluoresceínas/metabolismo , Processamento de Imagem Assistida por Computador , Desenvolvimento Vegetal , Reprodutibilidade dos Testes
7.
Nat Commun ; 11(1): 364, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953391

RESUMO

Lateral roots originate from initial cells deep within the main root and must emerge through several overlying layers. Lateral root emergence requires the outgrowth of the new primordium (LRP) to coincide with the timely separation of overlying root cells, a developmental program coordinated by the hormone auxin. Here, we report that in Arabidopsis thaliana roots, auxin controls the spatiotemporal expression of the plasmodesmal regulator PDLP5 in cells overlying LRP, creating a negative feedback loop. PDLP5, which functions to restrict the cell-to-cell movement of signals via plasmodesmata, is induced by auxin in cells overlying LRP in a progressive manner. PDLP5 localizes to plasmodesmata in these cells and negatively impacts organ emergence as well as overall root branching. We present a model, incorporating the spatiotemporal expression of PDLP5 in LRP-overlying cells into known auxin-regulated LRP-overlying cell separation pathways, and speculate how PDLP5 may function to negatively regulate the lateral root emergence process.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Raízes de Plantas/citologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Elife ; 62017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230527

RESUMO

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of 'funnel plasmodesmata'. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as 'batch unloading'. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.


Assuntos
Arabidopsis/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Modelos Teóricos , Imagem Óptica , Plasmodesmos/metabolismo
9.
Plant Signal Behav ; 7(3): 431-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22499206

RESUMO

Cell death is a biological process that occurs during differentiation and maturation of certain cell types, during senescence, or as part of a defense mechanism against microbial pathogens. Intercellular coordination is thought to be necessary to restrict the spread of death signals, although little is known about how cell death is controlled at the tissue level. The recent characterization of a plasmodesmal protein, PDLP5, has revealed an important role for plasmodesmal control during salicylic acid-mediated cell death responses. Here, we discuss molecular factors that are potentially involved in PDLP5 expression, and explore possible signaling networks that PDLP5 interacts with during basal defense responses.


Assuntos
Plasmodesmos/metabolismo , Comunicação Celular/fisiologia , Morte Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA