Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(18): E3602-E3611, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416685

RESUMO

Lysosomes degrade cellular components sequestered by autophagy or extracellular material internalized by endocytosis and phagocytosis. The macromolecule building blocks released by lysosomal hydrolysis are then exported to the cytosol by lysosomal transporters, which remain undercharacterized. In this study, we designed an in situ assay of lysosomal amino acid export based on the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis that detects lysosomal storage. This assay was used to screen candidate lysosomal transporters, leading to the identification of sodium-coupled neutral amino acid transporter 7 (SNAT7), encoded by the SLC38A7 gene, as a lysosomal transporter highly selective for glutamine and asparagine. Cell fractionation confirmed the lysosomal localization of SNAT7, and flux measurements confirmed its substrate selectivity and showed a strong activation by the lysosomal pH gradient. Interestingly, gene silencing or editing experiments revealed that SNAT7 is the primary permeation pathway for glutamine across the lysosomal membrane and it is required for growth of cancer cells in a low free-glutamine environment, when macropinocytosis and lysosomal degradation of extracellular proteins are used as an alternative source of amino acids. SNAT7 may, thus, represent a novel target for glutamine-related anticancer therapies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Glutamina/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Glutamina/genética , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/patologia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
2.
J Biol Chem ; 292(28): 11980-11991, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28572511

RESUMO

Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Lisossomos/metabolismo , Erros Inatos do Metabolismo/genética , Modelos Moleculares , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Substituição de Aminoácidos , Domínio Catalítico , Linhagem Celular Transformada , Células Cultivadas , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/enzimologia , Lisossomos/patologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Simulação de Acoplamento Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/deficiência , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia Estrutural de Proteína , Vitamina B 12/metabolismo
3.
Mol Cell Proteomics ; 12(6): 1572-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23436907

RESUMO

Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions.


Assuntos
Hepatócitos/metabolismo , Membranas Intracelulares/química , Fígado/metabolismo , Lisossomos/química , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteoma/isolamento & purificação , Animais , Biomarcadores/metabolismo , Expressão Gênica , Células HeLa , Hepatócitos/química , Humanos , Fígado/química , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo , Ratos , Ratos Wistar
4.
Proc Natl Acad Sci U S A ; 109(5): E210-7, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22232659

RESUMO

Secondary active transporters use electrochemical gradients provided by primary ion pumps to translocate metabolites or drugs "uphill" across membranes. Here we report the ion-coupling mechanism of cystinosin, an unusual eukaryotic, proton-driven transporter distantly related to the proton pump bacteriorhodopsin. In humans, cystinosin exports the proteolysis-derived dimeric amino acid cystine from lysosomes and is impaired in cystinosis. Using voltage-dependence analysis of steady-state and transient currents elicited by cystine and neutralization-scanning mutagenesis of conserved protonatable residues, we show that cystine binding is coupled to protonation of a clinically relevant aspartate buried in the membrane. Deuterium isotope substitution experiments are consistent with an access of this aspartate from the lysosomal lumen through a deep proton channel. This aspartate lies in one of the two PQ-loop motifs shared by cystinosin with a set of eukaryotic membrane proteins of unknown function and is conserved in about half of them, thus suggesting that other PQ-loop proteins may translocate protons.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisossomos/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Mutagênese , Prótons , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 109(50): E3434-43, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23169667

RESUMO

Cystinosin, the lysosomal cystine exporter defective in cystinosis, is the founding member of a family of heptahelical membrane proteins related to bacteriorhodopsin and characterized by a duplicated motif termed the PQ loop. PQ-loop proteins are more frequent in eukaryotes than in prokaryotes; except for cystinosin, their molecular function remains elusive. In this study, we report that three yeast PQ-loop proteins of unknown function, Ypq1, Ypq2, and Ypq3, localize to the vacuolar membrane and are involved in homeostasis of cationic amino acids (CAAs). We also show that PQLC2, a mammalian PQ-loop protein closely related to yeast Ypq proteins, localizes to lysosomes and catalyzes a robust, electrogenic transport that is selective for CAAs and strongly activated at low extracytosolic pH. Heterologous expression of PQLC2 at the yeast vacuole rescues the resistance phenotype of an ypq2 mutant to canavanine, a toxic analog of arginine efficiently transported by PQLC2. Finally, PQLC2 transports a lysine-like mixed disulfide that serves as a chemical intermediate in cysteamine therapy of cystinosis, and PQLC2 gene silencing trapped this intermediate in cystinotic cells. We conclude that PQLC2 and Ypq1-3 proteins are lysosomal/vacuolar exporters of CAAs and suggest that small-molecule transport is a conserved feature of the PQ-loop protein family, in agreement with its distant similarity to SWEET sugar transporters and to the mitochondrial pyruvate carrier. The elucidation of PQLC2 function may help improve cysteamine therapy. It may also clarify the origin of CAA abnormalities in Batten disease.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cisteamina/uso terapêutico , Cistinose/tratamento farmacológico , Cistinose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Canavanina/metabolismo , RNA Helicases DEAD-box , DNA Complementar/genética , Proteínas de Drosophila , Fenômenos Eletrofisiológicos , Feminino , Genes Fúngicos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Oócitos/metabolismo , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Vacúolos/metabolismo , Xenopus laevis
6.
J Biol Chem ; 287(14): 11489-97, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334707

RESUMO

Secondary active transporters from the SLC17 protein family are required for excitatory and purinergic synaptic transmission, sialic acid metabolism, and renal function, and several members are associated with inherited neurological or metabolic diseases. However, molecular tools to investigate their function or correct their genetic defects are limited or absent. Using structure-activity, homology modeling, molecular docking, and mutagenesis studies, we have located the substrate-binding site of sialin (SLC17A5), a lysosomal sialic acid exporter also recently implicated in exocytotic release of aspartate. Human sialin is defective in two inherited sialic acid storage diseases and is responsible for metabolic incorporation of the dietary nonhuman sialic acid N-glycolylneuraminic acid. We built cytosol-open and lumen-open three-dimensional models of sialin based on weak, but significant, sequence similarity with the glycerol-3-phosphate and fucose permeases from Escherichia coli, respectively. Molecular docking of 31 synthetic sialic acid analogues to both models was consistent with inhibition studies. Narrowing the sialic acid-binding site in the cytosol-open state by two phenylalanine to tyrosine mutations abrogated recognition of the most active analogue without impairing neuraminic acid transport. Moreover, a pilot virtual high-throughput screening of the cytosol-open model could identify a pseudopeptide competitive inhibitor showing >100-fold higher affinity than the natural substrate. This validated model of human sialin and sialin-guided models of other SLC17 transporters should pave the way for the identification of inhibitors, glycoengineering tools, pharmacological chaperones, and fluorescent false neurotransmitters targeted to these proteins.


Assuntos
Biologia Computacional , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/química , Simportadores/metabolismo , Azepinas/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Indóis/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Transportadores de Ânions Orgânicos/genética , Projetos Piloto , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Relação Estrutura-Atividade , Simportadores/genética
7.
ACS Chem Biol ; 17(11): 3069-3076, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36314850

RESUMO

Targeting RNAs with small molecules is considered the next frontier for drug discovery. In this context, the development of compounds capable of binding RNA structural motifs of low complexity with high affinity and selectivity would greatly expand the number of targets of potential therapeutic value. In this study, we demonstrate that tuning the three-dimensional shape of promiscuous nucleic acid binders is a valuable strategy for the design of new selective RNA ligands. Indeed, starting from a known cyanine, the simple replacement of a phenyl ring with a [2.2]paracyclophane moiety led to a new compound able to discriminate between nucleic acids showing different structural characteristics with a marked affinity and selectivity for an octahairpin loop RNA sequence. This shape modification also affected the in cellulo behavior of the cyanine. These results suggest that scaffold hopping is a valuable strategy to improve the selectivity of RNA/small-molecule interactions and highlight the need to explore a new chemical space for the design of selective RNA ligands.


Assuntos
RNA , Bibliotecas de Moléculas Pequenas , Ligantes , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas
8.
Biochim Biophys Acta ; 1793(4): 636-49, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19146888

RESUMO

Lysosomal membrane proteins act at several crucial steps of the lysosome life cycle, including lumen acidification, metabolite export, molecular motor recruitment and fusion with other organelles. This review summarizes the molecular mechanisms of lysosomal storage diseases caused by defective transport of small molecules or ions across the lysosomal membrane, as well as Danon disease. In cystinosis and free sialic acid storage diseases, transporters for cystine and acidic monosaccharides, respectively, are blocked or retarded. A putative cobalamin transporter and a hybrid transporter/transferase of acetyl groups are defective in cobalamin F type disease and mucopolysaccharidosis type IIIC, respectively. In neurodegenerative forms of osteopetrosis, mutations of a proton/chloride exchanger impair the charge balance required for sustained proton pumping by the V-type ATPase, thus resulting in bone-resorption lacuna neutralization. However, the mechanism leading to lysosomal storage and neurodegeneration remains unclear. Mucolipidosis type IV is caused by mutations of a lysosomal cation channel named TRPML1; its gating properties are still poorly understood and the ion species linking this channel to lipid storage and membrane traffic defects is debated. Finally, the autophagy defect of Danon disease apparently arises from a role of LAMP2 in lysosome/autophagosome fusion, possibly secondary to a role in dynein-based centripetal motility.


Assuntos
Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas/metabolismo , Animais , Autofagia , Transporte Biológico , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo
9.
Biol Cell ; 100(9): 551-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18399798

RESUMO

BACKGROUND INFORMATION: Free sialic acid storage diseases are caused by mutations of a lysosomal sialic acid transporter called sialin. We showed recently that the milder clinical form, Salla disease, and a related non-Finish case, are characterized by residual transport, whereas sialin mutants found in lethal infantile cases are inactive. In the present study, we have characterized the molecular effects of a putative polymorphism (M316I) and of four pathogenic mutations associated with either infantile (G127E and R57C) or Salla-like (G409E) phenotypes, or both (G328E). The transport activity of human sialin was analysed using a novel assay that was based on a construct without the functional lysosomal sorting motif, which is expressed at the plasma membrane. RESULTS: The lysosomal localization of human sialin was not (M316I and G328E) or only partially (R57C, G127E and G409E) affected by the missense mutations. In contrast, all pathogenic mutations abolished transport, whereas the putative M316I polymorphism induced an approx. 5-fold decrease of sialic acid transport. CONCLUSIONS: The molecular effects of the R57C and G127E mutations strengthen the conclusion that the infantile phenotype is caused by loss-of-function mutations. On the other hand, the milder severity of the heterozygous G409E patient may reflect an incomplete expression of the splicing mutation present on the second allele. In the case of the G328E mutation, found in the homozygous state in a clinically heterogeneous family, the apparent severity of the transport phenotype suggests that the genetic or environmental factors underlying this clinical heterogeneity might be protective.


Assuntos
Mutação de Sentido Incorreto , Transportadores de Ânions Orgânicos/genética , Polimorfismo Genético , Doença do Armazenamento de Ácido Siálico/genética , Simportadores/genética , Linhagem Celular , Criança , Humanos , Lisossomos/química , Lisossomos/metabolismo , Modelos Moleculares , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Doença do Armazenamento de Ácido Siálico/metabolismo , Simportadores/química , Simportadores/metabolismo
10.
J Comp Neurol ; 462(1): 71-89, 2003 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-12761825

RESUMO

A first mammalian lysosomal transporter (LYAAT-1) was recently identified and functionally characterized. Preliminary immunocytochemical data revealed that LYAAT-1 localizes to lysosomes in some neurons. In order to determine whether it is expressed in specific neuron populations and other cell types, and to confirm whether it is localized at the membrane of lysosomes, we used in situ hybridization and immunohistochemistry methods in adult rat central nervous system (CNS). We found that LYAAT-1 is expressed in most areas of the CNS, specifically in neurons, but also in choroid plexus and ependymal epithelium cells. LYAAT-1-IR (immunoreactivity) levels varied among different neuroanatomical structures but were present in neurons independently of the neurotransmitter used (glutamate, GABA, acetylcholine, noradrenaline, serotonin, or glycine). Light and confocal microscopy demonstrated that LYAAT-1 and the lysosomal marker cathepsin D colocalized throughout the brain and electron microscopy showed that LYAAT-1-IR was associated with lysosomal membranes. In addition, LYAAT-1-IR was also found associated with other membranes belonging to the Golgi apparatus and lateral saccules and less frequently with multivesicular bodies, endoplasmic reticulum, and occasionally with the plasma membrane. The localization of LYAAT-1 at the lysosomal membrane is consistent with the view that it mediates amino acid efflux from lysosomes. Furthermore, its cell expression pattern suggests that it may contribute to specialized cellular function in the rat CNS such as neuronal metabolism, neurotransmission, and control of brain amino acid homeostasis.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Sistema Nervoso Central/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Neutros , Animais , Catepsina D/metabolismo , Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Sistema Nervoso Central/ultraestrutura , Plexo Corióideo/metabolismo , Plexo Corióideo/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Epêndima/metabolismo , Epêndima/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Imuno-Histoquímica , Hibridização In Situ , Membranas Intracelulares/ultraestrutura , Lisossomos/ultraestrutura , Microscopia Eletrônica , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley/anatomia & histologia , Simportadores
11.
Neuropsychopharmacology ; 36(12): 2538-50, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21814181

RESUMO

The vesicular monoamine transporter type 2 gene (VMAT2) has a crucial role in the storage and synaptic release of all monoamines, including serotonin (5-HT). To evaluate the specific role of VMAT2 in 5-HT neurons, we produced a conditional ablation of VMAT2 under control of the serotonin transporter (slc6a4) promoter. VMAT2(sert-cre) mice showed a major (-95%) depletion of 5-HT levels in the brain with no major alterations in other monoamines. Raphe neurons contained no 5-HT immunoreactivity in VMAT2(sert-cre) mice but developed normal innervations, as assessed by both tryptophan hydroxylase 2 and 5-HT transporter labeling. Increased 5-HT(1A) autoreceptor coupling to G protein, as assessed with agonist-stimulated [(35)S]GTP-γ-S binding, was observed in the raphe area, indicating an adaptive change to reduced 5-HT transmission. Behavioral evaluation in adult VMAT2(sert-cre) mice showed an increase in escape-like reactions in response to tail suspension and anxiolytic-like response in the novelty-suppressed feeding test. In an aversive ultrasound-induced defense paradigm, VMAT2(sert-cre) mice displayed a major increase in escape-like behaviors. Wild-type-like defense phenotype could be rescued by replenishing intracellular 5-HT stores with chronic pargyline (a monoamine oxidase inhibitor) treatment. Pargyline also allowed some form of 5-HT release, although in reduced amounts, in synaptosomes from VMAT2(sert-cre) mouse brain. These findings are coherent with the notion that 5-HT has an important role in anxiety, and provide new insights into the role of endogenous 5-HT in defense behaviors.


Assuntos
Reação de Fuga/fisiologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , Serotonina/deficiência , Serotonina/genética , Índice de Gravidade de Doença , Proteínas Vesiculares de Transporte de Monoamina/deficiência , Proteínas Vesiculares de Transporte de Monoamina/genética , Animais , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Nat Genet ; 41(2): 234-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19136951

RESUMO

Vitamin B(12) (cobalamin) is essential in animals for metabolism of branched chain amino acids and odd chain fatty acids, and for remethylation of homocysteine to methionine. In the cblF inborn error of vitamin B(12) metabolism, free vitamin accumulates in lysosomes, thus hindering its conversion to cofactors. Using homozygosity mapping in 12 unrelated cblF individuals and microcell-mediated chromosome transfer, we identified a candidate gene on chromosome 6q13, LMBRD1, encoding LMBD1, a lysosomal membrane protein with homology to lipocalin membrane receptor LIMR. We identified five different frameshift mutations in LMBRD1 resulting in loss of LMBD1 function, with 18 of the 24 disease chromosomes carrying the same mutation embedded in a common 1.34-Mb haplotype. Transfection of fibroblasts of individuals with cblF with wild-type LMBD1 rescued cobalamin coenzyme synthesis and function. This work identifies LMBRD1 as the gene underlying the cblF defect of cobalamin metabolism and suggests that LMBD1 is a lysosomal membrane exporter for cobalamin.


Assuntos
Hiper-Homocisteinemia/complicações , Proteínas de Membrana Transportadoras/deficiência , Ácido Metilmalônico/metabolismo , Proteínas/genética , Transcobalaminas/genética , Deficiência de Vitamina B 12/genética , Vitamina B 12/metabolismo , Criança , Deleção Cromossômica , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Feminino , Células HeLa , Humanos , Hiper-Homocisteinemia/genética , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ácido Metilmalônico/urina , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Polimorfismo Genético , Proteínas/isolamento & purificação , Proteínas/metabolismo , Distribuição Tecidual , Transcobalaminas/isolamento & purificação , Transcobalaminas/metabolismo , Deficiência de Vitamina B 12/etiologia , Deficiência de Vitamina B 12/metabolismo
13.
EMBO J ; 23(23): 4560-70, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15510212

RESUMO

The modification of cell surface lipids or proteins with sialic acid is essential for many biological processes and several diseases are caused by defective sialic acid metabolism. Sialic acids cleaved off from degraded sialoglycoconjugates are exported from lysosomes by a membrane transporter, named sialin, which is defective in two allelic inherited diseases: infantile sialic acid storage disease (ISSD) and Salla disease. To develop a functional assay of human sialin, we redirected the protein to the plasma membrane by mutating a dileucine-based internalization motif. Cells expressing the plasmalemmal construct accumulated neuraminic acid at acidic pH by a process equivalent to lysosomal efflux. The assay was used to determine how pathogenic mutations affect transport. Interestingly, while two missense mutations and one small, in-frame deletion associated with ISSD abolished transport, the mutation causing Salla disease (R39C) slowed down, but did not stop, the transport cycle, thus explaining why the latter disorder is less severe. Since neurological symptoms predominate in Salla disease, our results suggest that sialin is rate-limiting to specific sialic acid-dependent processes of the nervous system.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Clonagem Molecular , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Mutação , Transportadores de Ânions Orgânicos/genética , Transporte Proteico , Doença do Armazenamento de Ácido Siálico/genética , Ácidos Siálicos/metabolismo , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA