Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 49(20): 11629-11642, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34086966

RESUMO

MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer - a major lesion of UV radiation-induced products - or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 - two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.


Assuntos
Adenina/análogos & derivados , DNA/metabolismo , Metiltransferases/metabolismo , Mutação , Adenina/metabolismo , Sítios de Ligação , DNA/química , DNA/genética , Metilação de DNA , Humanos , Metiltransferases/química , Ligação Proteica
2.
Genes Dev ; 29(6): 630-45, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792598

RESUMO

In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3' untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54(nrb). However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54(nrb), resulting in reduced binding of p54(nrb) to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein-RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1.


Assuntos
Núcleo Celular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Elementos Alu/genética , Animais , Linhagem Celular , Metilação de DNA , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Sequências Repetidas Invertidas/genética , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
3.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33536174

RESUMO

Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.

4.
PLoS Pathog ; 16(1): e1008231, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905227

RESUMO

Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies.


Assuntos
Filoviridae/fisiologia , Marburgvirus/fisiologia , Mimetismo Molecular , Proteínas Proto-Oncogênicas c-yes/metabolismo , Proteínas da Matriz Viral/fisiologia , Liberação de Vírus , Angiomotinas , Sítios de Ligação , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Domínios PDZ , Domínios Proteicos , Proteínas Recombinantes de Fusão/metabolismo
5.
Mol Cell ; 52(1): 37-51, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24076217

RESUMO

The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity.


Assuntos
Apoptose , Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Arginina , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Ciclina A/metabolismo , Dano ao DNA , Fator de Transcrição E2F1/genética , Regulação da Expressão Gênica , Humanos , Metilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Interferência de RNA , Proteínas Repressoras/genética , Transdução de Sinais , Transcrição Gênica , Transfecção
6.
PLoS Pathog ; 13(7): e1006519, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28723972

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1006132.].

7.
PLoS Pathog ; 13(1): e1006132, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076420

RESUMO

Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/fisiologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/transmissão , Doença do Vírus de Marburg/transmissão , Marburgvirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/genética , Animais , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cricetinae , Ebolavirus/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Humanos , Doença do Vírus de Marburg/patologia , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Ubiquitina-Proteína Ligases Nedd4 , Prolina/análogos & derivados , Prolina/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Biochemistry ; 57(14): 2140-2149, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29558110

RESUMO

Multivalent binding is an efficient means to enhance the affinity and specificity of chemical probes targeting multidomain proteins in order to study their function and role in disease. While the theory of multivalent binding is straightforward, physical and structural characterization of bivalent binding encounters multiple technical difficulties. We present a case study where a combination of experimental techniques and computational simulations was used to comprehensively characterize the binding and structure-affinity relationships for a series of Bromosporine-based bivalent bromodomain ligands with a bivalent protein, Transcription Initiation Factor TFIID subunit 1 (TAF1). Experimental techniques-Isothermal Titration Calorimetry, X-ray Crystallography, Circular Dichroism, Size Exclusion Chromatography-Multi-Angle Light Scattering, and Surface Plasmon Resonance-were used to determine structures, binding affinities, and kinetics of monovalent ligands and bivalent ligands with varying linker lengths. The experimental data for monomeric ligands were fed into explicit computational simulations, in which both ligand and protein species were present in a broad range of concentrations, and in up to a 100 s time regime, to match experimental conditions. These simulations provided accurate estimates for apparent affinities (in good agreement with experimental data), individual dissociation microconstants and other microscopic details for each type of protein-ligand complex. We conclude that the expected efficiency of bivalent ligands in a cellular context is difficult to estimate by a single technique in vitro, due to higher order associations favored at the concentrations used, and other complicating processes. Rather, a combination of structural, biophysical, and computational approaches should be utilized to estimate and characterize multivalent interactions.


Assuntos
Histona Acetiltransferases/química , Fatores Associados à Proteína de Ligação a TATA/química , Fator de Transcrição TFIID/química , Calorimetria , Cristalografia por Raios X , Difusão Dinâmica da Luz , Histona Acetiltransferases/metabolismo , Humanos , Sondas Moleculares/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo
9.
J Biol Chem ; 292(35): 14456-14472, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717009

RESUMO

The transition from transcription initiation to elongation is a key regulatory step in gene expression, which requires RNA polymerase II (pol II) to escape promoter proximal pausing on chromatin. Although elongation factors promote pause release leading to transcription elongation, the role of epigenetic modifications during this critical transition step is poorly understood. Two histone marks on histone H3, lysine 4 trimethylation (H3K4me3) and lysine 9 acetylation (H3K9ac), co-localize on active gene promoters and are associated with active transcription. H3K4me3 can promote transcription initiation, yet the functional role of H3K9ac is much less understood. We hypothesized that H3K9ac may function downstream of transcription initiation by recruiting proteins important for the next step of transcription. Here, we describe a functional role for H3K9ac in promoting pol II pause release by directly recruiting the super elongation complex (SEC) to chromatin. H3K9ac serves as a substrate for direct binding of the SEC, as does acetylation of histone H4 lysine 5 to a lesser extent. Furthermore, lysine 9 on histone H3 is necessary for maximal pol II pause release through SEC action, and loss of H3K9ac increases the pol II pausing index on a subset of genes in HeLa cells. At select gene promoters, H3K9ac loss or SEC depletion reduces gene expression and increases paused pol II occupancy. We therefore propose that an ordered histone code can promote progression through the transcription cycle, providing new mechanistic insight indicating that SEC recruitment to certain acetylated histones on a subset of genes stimulates the subsequent release of paused pol II needed for transcription elongation.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Lisina/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Elongação da Transcrição Genética , Iniciação da Transcrição Genética , Acetilação , Substituição de Aminoácidos , Animais , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigênese Genética , Células HeLa , Histonas/antagonistas & inibidores , Histonas/química , Histonas/genética , Humanos , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768865

RESUMO

Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress.IMPORTANCE Ebola virus (EBOV) is a high-priority, emerging human pathogen that can cause severe outbreaks of hemorrhagic fever with high mortality rates. As there are currently no approved vaccines or treatments for EBOV, a better understanding of the biology and functions of EBOV-host interactions that promote or inhibit viral budding is warranted. Here, we describe a physical and functional interaction between EBOV VP40 (eVP40) and WWP1, a host E3 ubiquitin ligase that ubiquitinates VP40 and regulates VLP egress. This viral PPXY-host WW domain-mediated interaction represents a potential new target for host-oriented inhibitors of EBOV egress.


Assuntos
Ebolavirus/fisiologia , Interações Hospedeiro-Patógeno , Nucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Core Viral/metabolismo , Liberação de Vírus , Células HEK293 , Humanos , Nucleoproteínas/química , Nucleoproteínas/genética , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus
11.
J Virol ; 90(20): 9163-71, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489272

RESUMO

UNLABELLED: Ebola virus (EBOV) and Marburg virus (MARV) belong to the Filoviridae family and can cause outbreaks of severe hemorrhagic fever, with high mortality rates in humans. The EBOV VP40 (eVP40) and MARV VP40 (mVP40) matrix proteins play a central role in virion assembly and egress, such that independent expression of VP40 leads to the production and egress of virus-like particles (VLPs) that accurately mimic the budding of infectious virus. Late (L) budding domains of eVP40 recruit host proteins (e.g., Tsg101, Nedd4, and Alix) that are important for efficient virus egress and spread. For example, the PPxY-type L domain of eVP40 and mVP40 recruits the host Nedd4 E3 ubiquitin ligase via its WW domains to facilitate budding. Here we sought to identify additional WW domain host interactors and demonstrate that the PPxY L domain motif of eVP40 interacts specifically with the WW domain of the host E3 ubiquitin ligase ITCH. ITCH, like Nedd4, is a member of the HECT class of E3 ubiquitin ligases, and the resultant physical and functional interaction with eVP40 facilitates VLP and virus budding. Identification of this novel eVP40 interactor highlights the functional interplay between cellular E3 ligases, ubiquitination, and regulation of VP40-mediated egress. IMPORTANCE: The unprecedented magnitude and scope of the recent 2014-2015 EBOV outbreak in West Africa and its emergence here in the United States and other countries underscore the critical need for a better understanding of the biology and pathogenesis of this emerging pathogen. We have identified a novel and functional EBOV VP40 interactor, ITCH, that regulates VP40-mediated egress. This virus-host interaction may represent a new target for our previously identified small-molecule inhibitors of virus egress.


Assuntos
Ebolavirus/fisiologia , Interações Hospedeiro-Patógeno , Nucleoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Core Viral/metabolismo , Liberação de Vírus , Animais , Linhagem Celular , Humanos , Mapeamento de Interação de Proteínas
12.
Proc Natl Acad Sci U S A ; 111(31): 11341-6, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049398

RESUMO

The retinoblastoma tumor suppressor protein pRb is a key regulator of cell cycle progression and mediator of the DNA damage response. Lysine methylation at K810, which occurs within a critical Cdk phosphorylation motif, holds pRb in the hypophosphorylated growth-suppressing state. We show here that methyl K810 is read by the tandem tudor domain containing tumor protein p53 binding protein 1 (53BP1). Structural elucidation of 53BP1 in complex with a methylated K810 pRb peptide emphasized the role of the 53BP1 tandem tudor domain in recognition of the methylated lysine and surrounding residues. Significantly, binding of 53BP1 to methyl K810 occurs on E2 promoter binding factor target genes and allows pRb activity to be effectively integrated with the DNA damage response. Our results widen the repertoire of cellular targets for 53BP1 and suggest a previously unidentified role for 53BP1 in regulating pRb tumor suppressor activity.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Senescência Celular , Cromatina/metabolismo , Reparo do DNA , Humanos , Metilação , Camundongos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteína do Retinoblastoma/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
Nat Chem Biol ; 9(3): 184-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292653

RESUMO

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Assuntos
Benzamidas/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Lisina/análogos & derivados , Sondas Moleculares/farmacologia , Piperidinas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Ligação Competitiva/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inibidores , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Piperidinas/química , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
14.
Brain ; 137(Pt 2): 411-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24369382

RESUMO

We previously localized a new form of recessive ataxia with generalized tonic-clonic epilepsy and mental retardation to a 19 Mb interval in 16q21-q23 by homozygosity mapping of a large consanguineous Saudi Arabian family. We now report the identification by whole exome sequencing of the missense mutation changing proline 47 into threonine in the first WW domain of the WW domain containing oxidoreductase gene, WWOX, located in the linkage interval. Proline 47 is a highly conserved residue that is part of the WW motif consensus sequence and is part of the hydrophobic core that stabilizes the WW fold. We demonstrate that proline 47 is a key amino acid essential for maintaining the WWOX protein fully functional, with its mutation into a threonine resulting in a loss of peptide interaction for the first WW domain. We also identified another highly conserved homozygous WWOX mutation changing glycine 372 to arginine in a second consanguineous family. The phenotype closely resembled the index family, presenting with generalized tonic-clonic epilepsy, mental retardation and ataxia, but also included prominent upper motor neuron disease. Moreover, we observed that the short-lived Wwox knock-out mouse display spontaneous and audiogenic seizures, a phenotype previously observed in the spontaneous Wwox mutant rat presenting with ataxia and epilepsy, indicating that homozygous WWOX mutations in different species causes cerebellar ataxia associated with epilepsy.


Assuntos
Ataxia Cerebelar/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Oxirredutases/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Células Cultivadas , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/epidemiologia , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , Estrutura Secundária de Proteína , Arábia Saudita/epidemiologia , Oxidorredutase com Domínios WW , Adulto Jovem
15.
Mol Cells ; 47(7): 100074, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901530

RESUMO

Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels. Although it is understood that EtOH promotes CYP2E1 induction and activation, the mechanisms that regulate CYP2E1 expression in the context of intestinal damage remain poorly defined. Specific miRNAs, including miR-132, miR-212, miR-378, and miR-552, have been shown to repress the expression of CYP2E1, suggesting that these miRNAs contribute to EtOH-induced intestinal injury. Here, we have shown that CYP2E1 expression is regulated post-transcriptionally through miRNA-mediated degradation, as follows: (1) the RNA-binding protein AU-binding factor 1 (AUF1) binds mature miRNAs, including CYP2E1-targeting miRNAs, and this binding modulates the degradation of corresponding target mRNAs upon EtOH treatment; (2) the serine/threonine kinase mammalian Ste20-like kinase 1 (MST1) mediates oxidative stress-induced phosphorylation of AUF1. Those findings suggest that reactive oxygen species-mediated signaling modulates AUF1/miRNA interaction through MST1-mediated phosphorylation. Thus, our study demonstrates the critical functions of AUF1 phosphorylation by MST1 in the decay of miRNAs targeting CYP2E1, the stabilization of CYP2E1 mRNA in the presence of EtOH, and the relationship of this pathway to subsequent intestinal injury.

17.
Viruses ; 13(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673144

RESUMO

Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus-cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40-SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/enzimologia , Doença do Vírus de Marburg/enzimologia , Marburgvirus/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus , Motivos de Aminoácidos , Animais , Ebolavirus/química , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Humanos , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/química , Marburgvirus/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion/genética , Vírion/fisiologia , Montagem de Vírus
18.
PLoS One ; 16(6): e0251955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106957

RESUMO

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2-induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway and/or gastrointestinal barrier damage and mitigate virus spread.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Proteínas do Envelope de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , COVID-19/patologia , Interações Hospedeiro-Patógeno , Humanos , Domínios PDZ , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , SARS-CoV-2/isolamento & purificação , Junções Íntimas/metabolismo
19.
bioRxiv ; 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33398268

RESUMO

Newly emerged SARS-CoV-2 is the cause of an ongoing global pandemic leading to severe respiratory disease in humans. SARS-CoV-2 targets epithelial cells in the respiratory tract and lungs, which can lead to amplified chloride secretion and increased leak across epithelial barriers, contributing to severe pneumonia and consolidation of the lungs as seen in many COVID-19 patients. There is an urgent need for a better understanding of the molecular aspects that contribute to SARS-CoV-2 induced pathogenesis and for the development of approaches to mitigate these damaging pathologies. The multifunctional SARS-CoV-2 Envelope (E) protein contributes to virus assembly/egress, and as a membrane protein, also possesses viroporin channel properties that may contribute to epithelial barrier damage, pathogenesis, and disease severity. The extreme C-terminal (ECT) sequence of E also contains a putative PDZ-domain binding motif (PBM), similar to that identified in the E protein of SARS-CoV-1. Here, we screened an array of GST-PDZ domain fusion proteins using either a biotin-labeled WT or mutant ECT peptide from the SARS-CoV-2 E protein. Notably, we identified a singular specific interaction between the WT E peptide and the second PDZ domain of human Zona Occludens-1 (ZO1), one of the key regulators of TJ formation/integrity in all epithelial tissues. We used homogenous time resolve fluorescence (HTRF) as a second complementary approach to further validate this novel modular E-ZO1 interaction. We postulate that SARS-CoV-2 E interacts with ZO1 in infected epithelial cells, and this interaction may contribute, in part, to tight junction damage and epithelial barrier compromise in these cell layers leading to enhanced virus spread and severe respiratory dysfunction that leads to morbidity. Prophylactic/therapeutic intervention targeting this virus-host interaction may effectively reduce airway barrier damage and mitigate virus spread.

20.
Epigenetics Chromatin ; 13(1): 44, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097091

RESUMO

The chromatin-binding E3 ubiquitin ligase ubiquitin-like with PHD and RING finger domains 1 (UHRF1) contributes to the maintenance of aberrant DNA methylation patterning in cancer cells through multivalent histone and DNA recognition. The tandem Tudor domain (TTD) of UHRF1 is well-characterized as a reader of lysine 9 di- and tri-methylation on histone H3 (H3K9me2/me3) and, more recently, lysine 126 di- and tri-methylation on DNA ligase 1 (LIG1K126me2/me3). However, the functional significance and selectivity of these interactions remain unclear. In this study, we used protein domain microarrays to search for additional readers of LIG1K126me2, the preferred methyl state bound by the UHRF1 TTD. We show that the UHRF1 TTD binds LIG1K126me2 with high affinity and selectivity compared to other known methyllysine readers. Notably, and unlike H3K9me2/me3, the UHRF1 plant homeodomain (PHD) and its N-terminal linker (L2) do not contribute to multivalent LIG1K126me2 recognition along with the TTD. To test the functional significance of this interaction, we designed a LIG1K126me2 cell-penetrating peptide (CPP). Consistent with LIG1 knockdown, uptake of the CPP had no significant effect on the propagation of DNA methylation patterning across the genomes of bulk populations from high-resolution analysis of several cancer cell lines. Further, we did not detect significant changes in DNA methylation patterning from bulk cell populations after chemical or genetic disruption of lysine methyltransferase activity associated with LIG1K126me2 and H3K9me2. Collectively, these studies identify UHRF1 as a selective reader of LIG1K126me2 in vitro and further implicate the histone and non-histone methyllysine reader activity of the UHRF1 TTD as a dispensable domain function for cancer cell DNA methylation maintenance.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/química , Epigênese Genética , Células HCT116 , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Domínio Tudor , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA