RESUMO
Cervical cancer (CC) is the fourth leading cancer type in females globally. Being an ailment of the birth canal, primitive treatment strategies, including surgery, radiation, or laser therapy, bring along the risk of infertility, neonate mortality, premature parturition, etc. Systemic chemotherapy led to systemic toxicity. Therefore, delivering a smaller cargo of therapeutics to the local site is more beneficial in terms of efficacy as well as safety. Due to the regeneration of cervicovaginal mucus, conventional dosage forms come with the limitations of leaking, the requirement of repeated administration, and compromised vaginal retention. Therefore, these days novel strategies are being investigated with the ability to combat the limitations of conventional formulations. Novel carriers can be engineered to manipulate bioadhesive properties and sustained release patterns can be obtained thus leading to the maintenance of actives at therapeutic level locally for a longer period. Other than the purpose of CC treatment, these delivery systems also have been designed as postoperative care where a certain dose of antitumor agent will be maintained in the cervix postsurgical removal of the tumor. Herein, the most explored localized delivery systems for the treatment of CC, namely, nanofibers, nanoparticles, in situ gel, liposome, and hydrogel, have been discussed in detail. These carriers have exceptional properties that have been further modified with the aid of a wide range of polymers in order to serve the required purpose of therapeutic effect, safety, and stability. Further, the safety of these delivery systems toward vital organs has also been discussed.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Recém-Nascido , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Lipossomos , HidrogéisRESUMO
The intricate process of protein binding orchestrates crucial drug interactions within the bloodstream, facilitating the formation of soluble complexes. This research endeavours to improve the dissolution and oral bioavailability of Rifampicin (RMP) by strategically manipulating drug-protein binding dynamics and the hydrophobic characteristics of human serum albumin (HSA). Various precipitation techniques leveraging methanol, ammonium sulfate, and heat treatment were meticulously employed to tailor the properties of colloidal albumin (HSA NPs). The resultant complexes underwent comprehensive characterization encompassing evaluations of hydrophobicity, size distribution, surface charge, and structural analyses through FTIR, TG-DSC, XRD, and morphological examinations. The findings revealed a significant binding affinity of 78.07 ± 6.6% with native albumin, aligning with prior research. Notably, the complex RMP-HSA NPs-M13, synthesized via the methanolic precipitation method, exhibited the most substantial complexation, achieving a remarkable 3.5-fold increase, followed by the ammonium sulfate (twofold) and heat treatment (1.07-fold) methods in comparison to native albumin binding. The gastric simulated media exhibited accelerated drug release kinetics, with maximal dissolution achieved within two hours, contrasting with the prolonged release observed under intestinal pH conditions. These findings translated into significant improvements in drug permeation, as evidenced by pharmacokinetic profiles demonstrating elevated Cmax, AUC, t1/2, and MRT values for RMP-HSA NPs-M13 compared to free RMP. In summary, this innovative approach underscores the potential of precipitation methods in engineering stable colloidal carrier systems tailored to enhance the oral bioavailability of poorly soluble drugs, offering a pragmatic and scalable alternative to conventional surfactants, polymers, or high-energy methods for complex formation and production.
Assuntos
Disponibilidade Biológica , Liberação Controlada de Fármacos , Rifampina , Solubilidade , Rifampina/farmacocinética , Rifampina/química , Rifampina/administração & dosagem , Administração Oral , Animais , Humanos , Precipitação Química , Interações Hidrofóbicas e Hidrofílicas , Albumina Sérica Humana/química , Nanopartículas/química , Ratos , Ligação Proteica , Masculino , Sulfato de Amônio/químicaRESUMO
The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.
Assuntos
Anti-Inflamatórios não Esteroides , Antifúngicos , Biofilmes , Candida albicans , Candidíase Vulvovaginal , Quitosana , Reagentes de Ligações Cruzadas , Nanopartículas , Ácido Fítico , Biofilmes/efeitos dos fármacos , Ácido Fítico/química , Ácido Fítico/farmacologia , Ácido Fítico/uso terapêutico , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico , Quitosana/química , Quitosana/farmacologia , Quitosana/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Testes de Sensibilidade Microbiana , Citocinas/imunologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Feminino , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/metabolismo , Vagina/microbiologiaRESUMO
Glycyrrhizin (GL) is the principal constituent of Glycyrrhiza glabra, having antiallergic, anticancer, anti-inflammatory, and antimicrobial action. The reverse-phase high-performance liquid chromatography (RP-HPLC) analytical method was used to quantitatively estimate GL in a nanoformulation and validated as per International Conference on Harmonization Q2 (R1) standards. A stationary phase of the C18-HL reversed-phase column and a mobile phase of acetonitrile and water were used for effective elution. The chromatographic conditions of RP-HPLC were optimized utilizing a quality-by-design approach to accomplish the required chromatographic separation of GL from its nanoformulation with minimal experimental runs. Optimized RP-HPLC conditions for the assay method consist of acetonitrile (41%) and water, pH 1.8, balanced with phosphoric acid (0.1%) as a mobile phase with a flow rate of 1 mL/min. The retention time was found at 7.25 min, and method validation confirmed its sensitivity, preciseness, accuracy, and robustness.
Assuntos
Cromatografia de Fase Reversa , Ácido Glicirrízico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Acetonitrilas/química , ÁguaRESUMO
Breast cancer is a serious concern for many women worldwide. Drug-loaded implants have shown several benefits over systemic administrations. To provide anti-cancer drugs with controlled release and reduced systemic toxicity, biodegradable in situ implants have attracted a lot of attention. In the present study, we aimed to design and optimize a doxorubicin-loaded chitosan-poloxamer in situ implant for breast cancer treatment. Utilizing Box-Behnken Design and a Quality-by-Design (QbD) methodology, the in situ implant was prepared with chitosan (X1), poloxamer 407 concentration (X2), and stirring time (X3) as the independent variables. It was characterized for its in vitro gelation time, pH, rheology, and morphology, and evaluated based on drug release profile, in vitro cytotoxicity activities, in vitro anti-inflammatory potential, in vitro cellular uptake, and in vivo anti-inflammatory and pharmacokinetics to ensure their therapeutic outcomes. The results revealed that the prepared formulation showed a gelation time of 26 ± 0.2 s with a viscosity of 8312.6 ± 114.2 cPs at 37 °C. The developed formulation showed better cytotoxic activity in MCF-7 cell lines compared to the free drug solution. It demonstrated reduced levels of pro-inflammatory cytokines in RAW 264.7 macrophages. Further, the prepared in situ implant increases the intracellular accumulation of DOX in the MCF-7 cells. The in vivo pharmacokinetic investigations depicted an increase in t 1/2 and a decrease in AUC of the developed formulation resulting in prolonged drug release and there could be a lower drug concentration in the bloodstream than for the free drug. Therefore, the developed in situ implant may offer a viable option for breast cancer treatment.
RESUMO
INTRODUCTION: Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 µg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS: This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS: Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION: Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.
Assuntos
Antineoplásicos , Portadores de Fármacos , Luteolina , Nanopartículas , Neoplasias , Humanos , Luteolina/farmacologia , Luteolina/química , Luteolina/administração & dosagem , Luteolina/farmacocinética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Portadores de Fármacos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Solubilidade , Disponibilidade BiológicaRESUMO
Microneedles are micron-sized arrays of needles that facilitate drug delivery for local and systemic effects. Hyaluronic acid (HA) is a glycosaminoglycan and is an indigenous component of the connective tissues and dermis. Owing to its versatility and biocompatibility, it has widely been used against various bone, eye, and skin disorders. Therefore, fabricating HA-microneedles is fetching massive global attention. HA based dissolvable microneedles have been immensely explored due to their biodegradable nature. Its degradation residues are very safe. Several attempts have been made to deliver vitamins, proteins, DNAs, and biological macromolecules by HA-microneedles. Here we present the recent advancements in HA-microneedles based application on drug delivery and cosmetology. Its bio-degradation pathways, the receptors on which HA and its derivatives interact, the biological half-lives, and their importance as useful materials for various applications are highlighted. The literature reports identify HA-microneedle as an useful carrier for the delivery of pharmaceuticals.