Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 121: 365-383, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084541

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and neuronal death. Besides aging, various comorbidities increase the risk of AD, including obesity, diabetes, and allergic asthma. Epidemiological studies have reported a 2.17-fold higher risk of dementia in asthmatic patients. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown. This study was designed to explore house dust mite (HDM)-induced asthma effects on AD-related brain changes using the AppNL-G-F transgenic mouse model of disease. Male and female 8-9 months old C57BL/6J wild type and AppNL-G-F mice were exposed to no treatment, saline sham, or HDM extract every alternate day for 16 weeks for comparison across genotypes and treatment. Mice were euthanized at the end of the experiment, and broncho-alveolar lavage fluid (BALF), blood, lungs, and brains were collected. BALF was used to quantify immune cell phenotype, cytokine levels, total protein content, lactate dehydrogenase (LDH) activity, and total IgE. Lungs were sectioned and stained with hematoxylin and eosin, Alcian blue, and Masson's trichrome. Serum levels of cytokines and soluble Aß1-40/42 were quantified. Brains were sectioned and immunostained for Aß, GFAP, CD68, and collagen IV. Finally, frozen hippocampi and temporal cortices were used to perform Aß ELISAs and cytokine arrays, respectively. HDM exposure led to increased levels of inflammatory cells, cytokines, total protein content, LDH activity, and total IgE in the BALF, as well as increased pulmonary mucus and collagen staining in both sexes and genotypes. Levels of serum cytokines increased in all HDM-exposed groups. Serum from the AppNL-G-F HDM-induced asthma group also had significantly increased soluble Aß1-42 levels in both sexes. In agreement with this peripheral change, hippocampi from asthma-induced male and female AppNL-G-F mice demonstrated elevated Aß plaque load and increased soluble Aß 1-40/42 and insoluble Aß 1-40 levels. HDM exposure also increased astrogliosis and microgliosis in both sexes of AppNL-G-F mice, as indicated by GFAP and CD68 immunoreactivity, respectively. Additionally, HDM exposure elevated cortical levels of several cytokines in both sexes and genotypes. Finally, HDM-exposed groups also showed a disturbed blood-brain-barrier (BBB) integrity in the hippocampus of AppNL-G-F mice, as indicated by decreased collagen IV immunoreactivity. HDM exposure was responsible for an asthma-like condition in the lungs that exacerbated Aß pathology, astrogliosis, microgliosis, and cytokine changes in the brains of male and female AppNL-G-F mice that correlated with reduced BBB integrity. Defining mechanisms of asthma effects on the brain may identify novel therapeutic targets for asthma and AD.

2.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511312

RESUMO

Alzheimer's disease (AD) is characterized by progressive cognitive decline and is a leading cause of death in the United States. Neuroinflammation has been implicated in the progression of AD, and several recent studies suggest that peripheral immune dysfunction may influence the disease. Continuing evidence indicates that intestinal dysbiosis is an attribute of AD, and inflammatory bowel disease (IBD) has been shown to aggravate cognitive impairment. Previously, we separately demonstrated that an IBD-like condition exacerbates AD-related changes in the brains of the AppNL-G-F mouse model of AD, while probiotic intervention has an attenuating effect. In this study, we investigated the combination of a dietary probiotic and an IBD-like condition for effects on the brains of mice. Male C57BL/6 wild type (WT) and AppNL-G-F mice were randomly divided into four groups: vehicle control, oral probiotic, dextran sulfate sodium (DSS), and DSS given with probiotics. As anticipated, probiotic treatment attenuated the DSS-induced colitis disease activity index in WT and AppNL-G-F mice. Although probiotic feeding significantly attenuated the DSS-mediated increase in WT colonic lipocalin levels, it was less protective in the AppNL-G-F DSS-treated group. In parallel with the intestinal changes, combined probiotic and DSS treatment increased microglial, neutrophil elastase, and 5hmC immunoreactivity while decreasing c-Fos staining compared to DSS treatment alone in the brains of WT mice. Although less abundant, probiotic combined with DSS treatment demonstrated a few similar changes in AppNL-G-F brains with increased microglial and decreased c-Fos immunoreactivity in addition to a slight increase in Aß plaque staining. Both probiotic and DSS treatment also altered the levels of several cytokines in WT and AppNL-G-F brains, with a unique increase in the levels of TNFα and IL-2 being observed in only AppNL-G-F mice following combined DSS and probiotic treatment. Our data indicate that, while dietary probiotic intervention provides protection against the colitis-like condition, it also influences numerous glial, cytokine, and neuronal changes in the brain that may regulate brain function and the progression of AD.


Assuntos
Doença de Alzheimer , Colite , Doenças Inflamatórias Intestinais , Aplicativos Móveis , Probióticos , Camundongos , Masculino , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/terapia , Colite/complicações , Doenças Inflamatórias Intestinais/complicações , Citocinas , Probióticos/farmacologia , Probióticos/uso terapêutico , Modelos Animais de Doenças , Camundongos Transgênicos
3.
Brain Behav Immun ; 73: 633-642, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30026058

RESUMO

Acute lung injury (ALI), a pulmonary inflammatory disorder, is associated with high morbidity and mortality rates. Interestingly, ALI survivors have been reported for some neurocognitive deterioration at/after discharge. However, the molecular factors behind such extra pulmonary manifestation are not clearly known. The present work was designed to investigate lung-brain cross talk in experimental mice for deciphering primary molecular factors that may be involved in ALI-mediated cognitive impairment. ALI was induced in Balb/c mice by intra-tracheal administration of either 0.1 N HCl (2 ml/kg) or LPS (1 mg/kg) as single hits or both agents were administered successively to mimic the 'two hit' model. Interestingly two hit-mediated ALI resulted in exaggerated inflammatory response as reflected by increased pulmonary neutrophils and inflammatory factors (TNF-α/IL-1ß/IL-6). Additionally, two hits resulted in delayed resolution of lung inflammation and was coupled with persistent decline in memory, as assessed by Morris water maze test. Further, two hits elevate serum levels of TNF-α/IL-1ß which was associated with compromised blood brain barrier (BBB), as evident by decreased expression of occludin/claudin-5 and consequent Evans-blue extravasation in hippocampus 1 week post injury. Finally, dexamethasone protects against the two hit mediated cognitive impairment by lowering the pro-inflammatory factors (TNF-α/IL-1ß) both in lungs and blood. Overall, we report for the first time that 'two hit' mediated ALI cause persistent cognitive impairment in mice partly via up-regulating systemic expression of TNF-α/IL-1ß that may disrupt BBB and hence the model may be a useful tool to examine the lung-brain cross-talk at the molecular level for exploring newer therapeutics.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Lesão Pulmonar Aguda/metabolismo , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Ácido Clorídrico/farmacologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/complicações , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Mol Cell Biochem ; 400(1-2): 153-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404465

RESUMO

We have previously shown that PARP-1 inhibition provides protection against lung inflammation in the context of asthma and acute lung injury. Olaparib is a potent new generation PARP inhibitor that has been approved for human testing. The present work was designed to evaluate its beneficial potential against LPS-induced acute lung injury and acute kidney injury upon intratracheal administration of the endotoxin in mice. Administration of olaparib at different doses, 30 min after LPS treatment showed that single intraperitoneal injection of the drug at 5 mg/kg b.wt. reduced the total number of inflammatory cells particularly neutrophils in the lungs. This was associated with reduced pulmonary edema as the total protein content in the bronchoalveolar fluid was found to be decreased substantially. Olaparib provided strong protection against LPS-mediated secondary kidney injury as reflected by restoration of serum levels of urea, creatinine, and uric acid toward normal. The drug restored the LPS-mediated redox imbalance toward normal in lung and kidney tissues as assessed by measuring malondialdehyde and GSH levels. Finally, RT-PCR data revealed that olaparib downregulates the LPS-induced expression of NF-κB-dependent genes namely TNF-α, IL-1ß, and VCAM-1 in the lungs without altering the expression of total p65NF-κB. Overall, the data suggest that olaparib has a strong potential to protect against LPS-induced lung injury and associated dysfunctioning of kidney in mice. Given the fact that olaparib is approved by FDA for human testing, our findings can pave the way for testing of the drug on humans inflicted with acute lung injury.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação/tratamento farmacológico , Poli(ADP-Ribose) Polimerases/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Camundongos , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases
5.
Curr Alzheimer Res ; 19(5): 335-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35718965

RESUMO

BACKGROUND: There is a well-described mechanism of communication between the brain and gastrointestinal system in which both organs influence the function of the other. This bi-directional communication suggests that disease in either organ may affect function in the other. OBJECTIVE: To assess whether the evidence supports gastrointestinal system inflammatory or degenerative pathophysiology as a characteristic of Alzheimer's disease (AD). METHODS: A review of both rodent and human studies implicating gastrointestinal changes in AD was performed. RESULTS: Numerous studies indicate that AD changes are not unique to the brain but also occur at various levels of the gastrointestinal tract involving both immune and neuronal changes. In addition, it appears that numerous conditions and diseases affecting regions of the tract may communicate to the brain to influence disease. CONCLUSION: Gastrointestinal changes represent an overlooked aspect of AD, representing a more system influence of this disease.


Assuntos
Doença de Alzheimer , Encéfalo , Trato Gastrointestinal , Humanos , Neurônios
6.
J Alzheimers Dis ; 80(2): 761-774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33554902

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and neuronal death. There are several well-established genetic and environmental factors hypothesized to contribute to AD progression including air pollution. However, the molecular mechanisms by which air pollution exacerbates AD are unclear. OBJECTIVE: This study explored the effects of particulate matter exposure on AD-related brain changes using the APP/PS1 transgenic model of disease. METHODS: Male C57BL/6;C3H wild type and APP/PS1 mice were exposed to either filtered air (FA) or particulate matter sized under 2.5µm (PM2.5) for 6 h/day, 5 days/week for 3 months and brains were collected. Immunohistochemistry for Aß, GFAP, Iba1, and CD68 and western blot analysis for PS1, BACE, APP, GFAP, and Iba1 were performed. Aß ELISAs and cytokine arrays were performed on frozen hippocampal and cortical lysates, respectively. RESULTS: The Aß plaque load was significantly increased in the hippocampus of PM2.5-exposed APP/PS1 mice compared to their respective FA controls. Additionally, in the PM2.5-exposed APP/PS1 group, increased astrocytosis and microgliosis were observed as indicated by elevated GFAP, Iba1, and CD68 immunoreactivities. PM2.5 exposure also led to an elevation in the levels of PS1 and BACE in APP/PS1 mice. The cytokines TNF-α, IL-6, IL-1ß, IFN-γ, and MIP-3α were also elevated in the cortices of PM2.5-exposed APP/PS1 mice compared to FA controls. CONCLUSION: Our data suggest that chronic particulate matter exposure exacerbates AD by increasing Aß plaque load, gliosis, and the brain inflammatory status.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , Gliose , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/patologia
7.
Eur J Pharmacol ; 877: 173091, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234526

RESUMO

Acute lung injury (ALI) has been reported to be associated with high mortality rate. Moreover, ALI survivors, frequently present chronic cognitive deterioration. We have previously shown that 'two hit' (hydrochloric acid + lipopolysaccharide) induced ALI resulted in cognitive dysfunction through the induction of systemic inflammation. The present study was designed to explore the potential anti-inflammatory effects of olaparib (Poly ADP-ribose polymerase-1 inhibitor), on ALI mediated cognitive impairment. Olaparib was administered at dose of 5 mg/kg body weight (i.p.) 30 min before each hit. Data show that olaparib pre-treatment markedly reduced the neutrophil infiltration, alveolar capillary damage, inflammatory cytokines level (TNF-α/IL-1ß/IL-6) and oxidative stress in the lungs at 24 h after ALI induction. Also, olaparib pre-treatment ameliorated the ALI associated cognitive impairment as assessed by Morris water maze test on weekly basis for 2 consecutive weeks. Further, restoration of cognitive function was associated with normalization of serum levels of TNF-α/IL-1ß and improved the blood brain barrier (BBB) function, as reflected by data on expression of occludin/claudin-5 and extravasation of Evans-blue/FITC dextran in hippocampus at 1 week post injury. Finally, increased mRNA expression of VCAM-1, TNF-α and IL-1ß and NF-κB activation in hippocampus indicate induction of neuro-inflammation, which was downregulated upon olaparib administration. Further, olaparib treatment 1 week after ALI induction blunted the systemic inflammation which was associated with improved BBB and cognitive function. Altogether, our results showed that olaparib protects against ALI and associated cognitive deficits in mice, and thus may offer a new treatment avenue in the area.


Assuntos
Lesão Pulmonar Aguda/complicações , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Inflamação/tratamento farmacológico , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA