Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Res ; 257: 119329, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851372

RESUMO

Conventional methods, such as freshwater dilution and ammonia stripping, have been widely employed for microalgae-based piggery wastewater (PW) treatment, but they cause high freshwater consumption and intensive ammonia loss, respectively. This present work developed a novel fast microbial nitrogen-assimilation technology by integrating nitrogen starvation, zeolite-based adsorption, pH control, and co-culture of microalgae-yeast for the PW treatment. Among them, the nitrogen starvation accelerated the nitrogen removal and shortened the treatment period, but it could not improve the tolerance level of microalgal cells to ammonia toxicity based on oxidative stress. Therefore, zeolite was added to reduce the initial total ammonia-nitrogen concentration to around 300 mg/L by ammonia adsorption. Slowly releasing ammonia at the later phase maintained the total ammonia-nitrogen concentration in the PW. However, the pH increase could cause lots of ammonia loss air and pollution and inhibit the desorption of ammonia from zeolite and the growth and metabolism of microalgae during the microalgae cultivation. Thus, the highest biomass yield (3.25 g/L) and nitrogen recovery ratio (40.31%) were achieved when the pH of PW was controlled at 6.0. After combining the co-cultivation of microalgae-yeast, the carbon-nitrogen co-assimilation and the alleviation of pH fluctuation further enhanced the nutrient removal and nitrogen migration to high-protein biomass. Consequently, the fast microbial nitrogen-assimilation technology can help update the industrial system for high-ammonia wastewater treatment by improving the treatment and nitrogen recovery rates.


Assuntos
Amônia , Microalgas , Nitrogênio , Águas Residuárias , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Amônia/metabolismo , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Animais , Zeolitas/química , Eliminação de Resíduos Líquidos/métodos , Suínos , Poluentes Químicos da Água , Criação de Animais Domésticos/métodos , Proteínas Alimentares
2.
Environ Sci Technol ; 53(7): 3977-3986, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30810037

RESUMO

Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) analysis, to enable quantitative comparisons based on anode and cathode area-based resistances and operating potentials. Using EPS analysis, the brush anode resistance ( RAn = 10.6 ± 0.5 mΩ m2) was shown to be 28% lower than the resistance of a 70% porosity diffusion layer (70% DL) cathode ( RCat = 14.8 ± 0.9 mΩ m2) and 24% lower than the solution resistance ( RΩ = 14 mΩ m2) (acetate in a 50 mM phosphate buffer solution). Using a less porous cathode (30% DL) did not impact the cathode resistance but did reduce the cathode performance due to a lower operating potential. With low-conductivity domestic wastewater ( RΩ = 87 mΩ m2), both electrodes had higher resistances [ RAn = 75 ± 9 mΩ m2, and RCat = 54 ± 7 mΩ m2 (70% DL)]. Our analysis of the literature using EPS analysis shows how electrode resistances can easily be quantified to compare system performance when the electrode distances are changed or the sizes of the electrodes are different.


Assuntos
Fontes de Energia Bioelétrica , Difusão , Condutividade Elétrica , Eletricidade , Eletrodos , Águas Residuárias
3.
Environ Sci Technol ; 53(14): 8291-8301, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31194515

RESUMO

In aerobic granular sludge (AGS) systems, different-sized microbial aggregates having different solids retention time (SRT) coexist in the same reactor compartment and are subjected to the same influent wastewater. Thus, the AGS system provides a unique ecosystem to study the importance of local (species sorting) and regional (immigration) processes in bacterial community assembly. The microbial communities of different-sized aggregates (flocs <0.2 mm, small granules (0.2-1.0 mm) and large granules >1.0 mm), influent wastewater, excess sludge and effluent of a full-scale AGS plant were characterized over a steady-state operation period of 6 months. Amplicon sequencing was integrated with mass balance to determine the SRT and net growth rate of operational taxonomic units (OTUs). We found strong evidence of species sorting as opposed to immigration, which was significantly higher at short SRT (i.e., flocs and small granules) than that at long SRT (large granules). Rare OTUs in wastewater belonging to putative functional groups responsible for nitrogen and phosphorus removal were progressively enriched with an increase in microbial aggregates size. In contrast, fecal- and sewage infrastructure-derived microbes progressively decreased in relative abundance with increase in microbial aggregate size. These findings highlight the importance of AGS as a unique model ecosystem to study fundamental microbial ecology concepts.


Assuntos
Reatores Biológicos , Esgotos , Aerobiose , Bactérias , Ecossistema , Emigração e Imigração , Eliminação de Resíduos Líquidos
4.
Environ Sci Technol ; 52(15): 8977-8985, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29965737

RESUMO

Low solution conductivity is known to adversely impact power generation in microbial fuel cells (MFCs), but its impact on measured electrode potentials has often been neglected in the reporting of electrode potentials. While errors in the working electrode (typically the anode) are usually small, larger errors can result in reported counter electrode potentials (typically the cathode) due to large distances between the reference and working electrodes or the use of whole cell voltages to calculate counter electrode potentials. As shown here, inaccurate electrode potentials impact conclusions concerning factors limiting power production in MFCs at higher current densities. To demonstrate how the electrochemical measurements should be adjusted using the solution conductivity, electrode potentials were estimated in MFCs with brush anodes placed close to the cathode (1 cm) or with flat felt anodes placed further from the cathode (3 cm) to avoid oxygen crossover to the anodes. The errors in the cathode potential for MFCs with brush anodes reached 94 mV using acetate in a 50 mM phosphate buffer solution. With a felt anode and acetate, cathode potential errors increased to 394 mV. While brush anode MFCs produced much higher power densities than flat anode MFCs under these conditions, this better performance was shown primarily to result from electrode spacing following correction of electrode potentials. Brush anode potentials corrected for solution conductivity were the same for brushes set 1 or 3 cm from the cathode, although the range of current produced was different due to ohmic losses with the larger distance. These results demonstrate the critical importance of using corrected electrode potentials to understand factors limiting power production in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Condutividade Elétrica , Impedância Elétrica , Eletrodos , Oxigênio
5.
J Environ Manage ; 206: 472-481, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107803

RESUMO

This study examines the stability and efficiency of thermophilic anaerobic digesters treating food waste under various mixing velocities (50-160 rpm). The results showed that high velocities (120 and 160 rpm) were harmful to the digestion process with 18-30% reduction in methane generation and 1.8 to 3.8 times increase in volatile fatty acids (VFA) concentrations, compared to mild mixing (50 and 80 rpm). Also, the removal rate of soluble COD dropped from 75 to 85% (at 50-80 rpm) to 20-59% (at 120-160 rpm). Similarly, interrupted mixing caused adverse impacts and led to near-failure conditions with excessive VFA accumulation (15.6 g l-1), negative removal rate of soluble COD and low methane generation (132 ml gVS-1). The best efficiency and stability were achieved under mild mixing (50 and 80 rpm). In particular, the 50 rpm stirring speed resulted in the highest methane generation (573 ml gVS-1). High-throughput sequencing of 16S rRNA genes revealed that the digesters were dominated by one bacterial genus (Petrotoga; phylym Thermotogae) at all mixing velocities except at 0 rpm, where the community was dominated by one bacterial genus (Anaerobaculum; phylum Synergistetes). The Petrotoga genus seems to have played a major role in the degradation of organic matter.


Assuntos
Reatores Biológicos , Ácidos Graxos Voláteis , Metano , Anaerobiose , RNA Ribossômico 16S , Eliminação de Resíduos
6.
Environ Sci Technol ; 50(8): 4439-47, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26691927

RESUMO

Electrically conductive, graphene-coated, hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 and 0.9 V) using a new rectangular reactor configuration compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than that in the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.


Assuntos
Incrustação Biológica/prevenção & controle , Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Grafite/química , Membranas Artificiais , Anaerobiose , Eletrodos , Pressão
7.
Appl Microbiol Biotechnol ; 100(13): 5999-6011, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26936773

RESUMO

Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Propionatos/metabolismo , Acetatos/química , Acetatos/metabolismo , Bactérias/química , Reatores Biológicos , Eletrodos , Eletrólise/instrumentação , Eletrólise/métodos , Fermentação , Metano/metabolismo , Propionatos/química
8.
Microb Ecol ; 70(1): 118-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25501888

RESUMO

Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32%), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18%) and Anaerolinea (7%) along with heterotrophic denitrifiers Rhodocyclacea (9%), Comamonadacea (3%), and Shewanellacea (3%) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.


Assuntos
Compostos de Amônio/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Microbiota , Archaea/ultraestrutura , Bactérias Anaeróbias/ultraestrutura , Sequência de Bases , Fosfatos de Cálcio/química , Microscopia Eletrônica , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Purificação da Água/métodos
9.
Appl Microbiol Biotechnol ; 99(5): 2361-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25326778

RESUMO

In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Biota , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Appl Microbiol Biotechnol ; 99(5): 2405-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25341399

RESUMO

The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L(-1) in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30-400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness.


Assuntos
Phanerochaete/efeitos dos fármacos , Phanerochaete/metabolismo , Selênio/metabolismo , Ânions/metabolismo , Antifúngicos/metabolismo , Adesão Celular/efeitos dos fármacos , Meios de Cultura/química , Citoplasma/química , Citoplasma/ultraestrutura , Glucose/metabolismo , Inibidores do Crescimento/metabolismo , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Oxirredução , Phanerochaete/crescimento & desenvolvimento , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Análise Espectral
11.
Environ Sci Technol ; 48(2): 1352-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24364567

RESUMO

There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials.


Assuntos
Bactérias/crescimento & desenvolvimento , Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Eletricidade , Técnicas Eletroquímicas , Eletrodos
12.
Environ Sci Technol ; 48(21): 12833-41, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25310368

RESUMO

A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; <1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).


Assuntos
Reatores Biológicos , Eletroquímica/instrumentação , Membranas Artificiais , Compostos Orgânicos/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Anaerobiose , Incrustação Biológica , Eletricidade , Microscopia Eletrônica de Varredura , Permeabilidade , Pressão , Soluções , Qualidade da Água
13.
Appl Microbiol Biotechnol ; 98(20): 8707-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149448

RESUMO

The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 10(2) cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings.


Assuntos
Azidas/metabolismo , Carga Bacteriana/métodos , Enterococcus faecalis/fisiologia , Inibidores Enzimáticos/metabolismo , Viabilidade Microbiana , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/métodos , Água do Mar/microbiologia , Enterococcus faecalis/isolamento & purificação , Propídio/metabolismo , Fatores de Tempo
14.
Curr Opin Biotechnol ; 88: 103163, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897092

RESUMO

Discoveries in the past decade of novel reactions, processes, and micro-organisms have altered our understanding of microbial nitrogen cycling in wastewater treatment systems. These advancements pave the way for a transition toward more sustainable and energy-efficient wastewater treatment systems that also minimize greenhouse gas emissions. This review highlights these innovative directions in microbial nitrogen cycling within the context of wastewater treatment. Processes such as comammox, Feammox, electro-anammox, and nitrous oxide mitigation offer innovative approaches for sustainable, energy-efficient nitrogen removal. However, while these emerging processes show promise, advancing from laboratory research to practical applications, particularly in decentralized systems, remains a critical next step toward a sustainable and efficient wastewater management.

15.
Trends Biotechnol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519307

RESUMO

Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.

16.
Environ Sci Ecotechnol ; 21: 100424, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38774191

RESUMO

Fruits, vegetables, and dairy products are typically the primary sources of household food waste. Currently, anaerobic digestion is the most used bioprocess for the treatment of food waste with concomitant generation of biogas. However, to achieve a circular carbon economy, the organics in food waste should be converted to new chemicals with higher value than energy. Here we demonstrate the feasibility of medium-chain carboxylic acid (MCCA) production from expired dairy and beverage waste via a chain elongation platform mediated by lactate. In a two-stage fermentation process, the first stage with optimized operational conditions, including varying temperatures and organic loading rates, transformed expired dairy and beverage waste into lactate at a concentration higher than 900 mM C at 43 °C. This lactate was then used to produce >500 mM C caproate and >300 mM C butyrate via microbial chain elongation. Predominantly, lactate-producing microbes such as Lactobacillus and Lacticaseibacillus were regulated by temperature and could be highly enriched under mesophilic conditions in the first-stage reactor. In the second-stage chain elongation reactor, the dominating microbes were primarily from the genera Megasphaera and Caproiciproducens, shaped by varying feed and inoculum sources. Co-occurrence network analysis revealed positive correlations among species from the genera Caproiciproducens, Ruminococcus, and CAG-352, as well as Megasphaera, Bacteroides, and Solobacterium, indicating strong microbial interactions that enhance caproate production. These findings suggest that producing MCCAs from expired dairy and beverage waste via lactate-mediated chain elongation is a viable method for sustainable waste management and could serve as a chemical production platform in the context of building a circular bioeconomy.

17.
Environ Sci Ecotechnol ; 21: 100387, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38322240

RESUMO

Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.

18.
Chemosphere ; 362: 142458, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810811

RESUMO

Membrane fouling is the major factor that restricts the furtherly widespread use of membrane bioreactor (MBR). As a new generation of MBR, biofilm membrane bioreactor (BF-MBR) demonstrates high treatment efficiency and low sludge growth rate, however the filtration performance improvement and membrane fouling control are still the challenges for its further development. This work investigated the filtration performance using resistance in series model and membrane fouling control via threshold flux for BF-MBR. At first, the flux behavior and filtration resistance under various operating conditions, including agitation speed, membrane and TMP, were explored by resistance in series model. Because of the desirable anti-fouling capacity, UP100 and UP030 had the high threshold flux (100 and 90 L m-2 h-1) and low irreversible fouling resistance (1 and 1.3 × 10-10 m-1). Higher shear stress produced by higher agitation speed could reduce membrane fouling, while greatly promote the threshold flux (138 L m-2 h-1) and membrane cleaning efficiency (96%). Moreover, increasing shear stress or selecting membrane with large pore size could decrease the fouling rate and raise the threshold flux. As for TMP, high TMP reduced the removal rate for organic and nutrient, and enhanced the irreversible fouling. Besides, the aerobic-BF-MBR (101 L m-2 h-1 and 1.3 × 10-10 m-1) with lower foulant concentration had a better filtration performance than anoxic-BF-MBR (90 L m-2 h-1 and 1.5 × 10-10 m-1). Additionally, the long-term tests with 10 cycles were conducted to evaluate the industrial application value of BF-MBR (45-58 L m-2 h-1). This work provides the technical support for sustainable filtration performance of BF-MBR.

19.
Water Res ; 259: 121815, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820732

RESUMO

Microbial electrosynthesis (MES) cells exploit the ability of microbes to convert CO2 into valuable chemical products such as methane and acetate, but high rates of chemical production may need to be mediated by hydrogen and thus require a catalyst for the hydrogen evolution reaction (HER). To avoid the usage of precious metal catalysts and examine the impact of the catalyst on the rate of methane generation by microbes on the electrode, we used a carbon felt cathode coated with NiMo/C and compared performance to a bare carbon felt or a Pt/C-deposited cathode. A zero-gap configuration containing a cation exchange membrane was developed to produce a low internal resistance, limit pH changes, and enhance direct transport of H2 to microorganisms on the biocathode. At a fixed cathode potential of -1 V vs Ag/AgCl, the NiMo/C biocathode enabled a current density of 23 ± 4 A/m2 and a high methane production rate of 4.7 ± 1.0 L/L-d. This performance was comparable to that using a precious metal catalyst (Pt/C, 23 ± 6 A/m2, 5.4 ± 2.8 L/L-d), and 3-5 times higher than plain carbon cathodes (8 ± 3 A/m2, 1.0 ± 0.4 L/L-d). The NiMo/C biocathode was operated for over 120 days without observable decay or severe cathode catalyst leaching, reaching an average columbic efficiency of 53 ± 9 % based on methane production under steady state conditions. Analysis of microbial community on the biocathode revealed the dominance of the hydrogenotrophic genus Methanobacterium (∼40 %), with no significant difference found for biocathodes with different materials. These results demonstrated that HER catalysts improved rates of methane generation through facilitating hydrogen gas evolution to an attached biofilm, and that the long-term enhancement of methane production in MES was feasible using a non-precious metal catalyst and a zero-gap cell design.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Metano , Metano/metabolismo , Catálise , Hidrogênio/metabolismo
20.
Nat Commun ; 15(1): 5361, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918384

RESUMO

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.


Assuntos
Archaea , Bactérias , Biodiversidade , Microbiota , Filogenia , RNA Ribossômico 16S , Archaea/genética , Archaea/classificação , Archaea/metabolismo , RNA Ribossômico 16S/genética , Anaerobiose , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Microbiota/genética , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Metano/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA