Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32393624

RESUMO

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Assuntos
Mudança Climática , Temperatura Baixa , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Ásia , Europa (Continente) , Florestas , América do Norte , Fenótipo , Análise Espaço-Temporal , Temperatura
2.
Environ Sci Pollut Res Int ; 31(42): 54962-54978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223410

RESUMO

The current study evaluated the effects of air pollution on selected street trees in the National Capital Territory during the pre- and post-monsoon seasons to identify the optimally suitable tree for green belt development in Delhi. The identification was performed by measuring the air pollution tolerance index (APTI), anticipated performance index (API), dust-capturing capacity (DCC) and proline content on the trees. The APTI of street trees of Delhi varied significantly among different tree species (F11,88.91 = 47.18, p < 0.05), experimental sites (F3,12.52 = 6.65, p < 0.001) and between seasons (F1,31.12 = 16.51, p < 0.001), emphasizing the relationships between trees and other types of variables such as the climate and level of pollution, among other factors. This variability emphasizes the need to choose trees to use for urban greening in the improvement of air quality in different environments within cities. Ascorbic acid (AA) concentration and relative water content (RWC) had a strong influence on APTI with an extremely significant moderate positive correlation between AA concentration and APTI (r = 0.65, p < 0.001) along with RWC and APTI (r = 0.52, p < 0.001), indicating that higher levels of AA concentration and RWC are linked to increased air pollution tolerance. The PCA bi-plot indicates AA has poor positive loading coefficients with PC1 explaining 29.49% of the total variance in the dataset. The highest APTI was recorded in Azadirachta indica (22.01), Leucaena leucocephala (20.65), Morus alba (20.62), Ficus religiosa (20.61) and Ficus benghalensis (19.61), irrespective of sites and seasons. Similarly, based on API grading, F. religiosa and F. benghalensis were identified as excellent API grade 6 (81-90%), A. indica and Alstonia scholaris as very good API grade 5 (71-80%), M. alba, Pongamia pinnata and Monoon longifolium as good API grade 4 (61-70%) and Plumeria alba as moderate API grade 3 (51-60%) in different streets of Delhi. As these plants are indigenous to the region and hold significant socio-economic and aesthetic significance in Indian societies, they are advisable for avenue plantations as part of various government initiatives to support environmental sustainability.


Assuntos
Poluição do Ar , Cidades , Árvores , Índia , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Estações do Ano
3.
Vegetos ; 34(3): 630-637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092942

RESUMO

The present paper highlights the importance of lac cultivation through Butea monosperma. We have modelled the suitable habitat of major lac host B. monosperma using MAXENT for the current and future climatic scenarios (RCPs 2.6, 4.5, 6.0 and 8.5). The study suggested the dominance of suitable habitats of B. monosperma in central-eastern to eastern and southern parts of the country. Temperature seasonality (Bio_4) was the most significant bioclimatic variable in regulating the distribution of B. monosperma followed by elevation and annual precipitation (Bio_13). The projection for the year 2050 suggested the habitat shift towards the eastern and southern parts. The study indicated the major habitat of B. monosperma continued to exist in the Chotanagpur plateau in eastern India. The model predicted approximately a 9-13% decrease in the overall potential habitat of B. monosperma by 2050, and the distribution of species would be nearly extinct from the northern and western parts. Presently, only the 5% lac host trees are being utilised for lac cultivation, and the study suggested that conservation and promotion of B. monosperma on projected suitable habitats and even by utilising 25% of resources, the lac production may jump manifold catering to global demand, rural economy and employment and shall contribute towards 'Self Reliant India'.

4.
Sci Total Environ ; 732: 139297, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32408041

RESUMO

The Severe Acute Respiratory Syndrome-Coronavirus Disease 2019 (COVID-19) pandemic caused by a novel coronavirus known as SARS-CoV-2 has caused tremendous suffering and huge economic losses. We hypothesized that extreme measures of partial-to-total shutdown might have influenced the quality of the global environment because of decreased emissions of atmospheric pollutants. We tested this hypothesis using satellite imagery, climatic datasets (temperature, and absolute humidity), and COVID-19 cases available in the public domain. While the majority of the cases were recorded from Western countries, where mortality rates were strongly positively correlated with age, the number of cases in tropical regions was relatively lower than European and North American regions, possibly attributed to faster human-to-human transmission. There was a substantial reduction in the level of nitrogen dioxide (NO2: 0.00002 mol m-2), a low reduction in CO (<0.03 mol m-2), and a low-to-moderate reduction in Aerosol Optical Depth (AOD: ~0.1-0.2) in the major hotspots of COVID-19 outbreak during February-March 2020, which may be attributed to the mass lockdowns. Our study projects an increasing coverage of high COVID-19 hazard at absolute humidity levels ranging from 4 to 9 g m-3 across a large part of the globe during April-July 2020 due to a high prospective meteorological suitability for COVID-19 spread. Our findings suggest that there is ample scope for restoring the global environment from the ill-effects of anthropogenic activities through temporary shutdown measures.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2 , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA