Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Mol Life Sci ; 81(1): 2, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043093

RESUMO

Ovarian cancer is amongst the most morbid of gynecological malignancies due to its diagnosis at an advanced stage, a transcoelomic mode of metastasis, and rapid transition to chemotherapeutic resistance. Like all other malignancies, the progression of ovarian cancer may be interpreted as an emergent outcome of the conflict between metastasizing cancer cells and the natural defense mounted by microenvironmental barriers to such migration. Here, we asked whether senescence in coelom-lining mesothelia, brought about by drug exposure, affects their interaction with disseminated ovarian cancer cells. We observed that cancer cells adhered faster on senescent human and murine mesothelial monolayers than on non-senescent controls. Time-lapse epifluorescence microscopy showed that mesothelial cells were cleared by a host of cancer cells that surrounded the former, even under sub-confluent conditions. A multiscale computational model predicted that such colocalized mesothelial clearance under sub-confluence requires greater adhesion between cancer cells and senescent mesothelia. Consistent with the prediction, we observed that senescent mesothelia expressed an extracellular matrix with higher levels of fibronectin, laminins and hyaluronan than non-senescent controls. On senescent matrix, cancer cells adhered more efficiently, spread better, and moved faster and persistently, aiding the spread of cancer. Inhibition assays using RGD cyclopeptides suggested the adhesion was predominantly contributed by fibronectin and laminin. These findings led us to propose that the senescence-associated matrisomal phenotype of peritoneal barriers enhances the colonization of invading ovarian cancer cells contributing to the metastatic burden associated with the disease.


Assuntos
Fibronectinas , Neoplasias Ovarianas , Feminino , Animais , Humanos , Camundongos , Epitélio , Peritônio/patologia , Matriz Extracelular , Neoplasias Ovarianas/patologia , Adesão Celular/fisiologia
2.
Anal Chem ; 95(19): 7594-7602, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37132509

RESUMO

Early detection of Alzheimer's disease (AD) is important for taking proper measures against AD pathogenesis. Acetylcholinesterase (AChE) is widely reported to be associated with the pathogenicity of AD. Here, employing the "acetylcholine-mimic" approach, we designed and synthesized a new class of naphthalimide (Naph)-based fluorogenic probes for specific detection of AChE and avoiding interference of butyrylcholinesterase (BuChE), the pseudocholinesterase. We investigated the action of the probes on Electrophorus electricus AChE, and the native human brain AChE that we expressed in Escherichia coli and purified in the active form for the first time. The probe Naph-3 exhibited a substantial fluorescence enhancement with AChE and majorly avoided BuChE. Naph-3 successfully crossed the cell membrane of the Neuro-2a cells and fluoresced upon reaction with endogenous AChE. We further established that the probe could be effectively used for screening AChE inhibitors. Our study provides a new avenue for the specific detection of AChE, which can be extended to the diagnosis of AChE-related complications.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Acetilcolina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
3.
Microb Pathog ; 173(Pt B): 105885, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403711

RESUMO

Stress adaptation and virulence of various bacterial pathogens require stringent response pathways involving guanosine pentaphosphate and inorganic polyphosphate (PolyP). In M. tuberculosis, intracellular PolyP levels are maintained by the activities of polyphosphate kinase (PPK-1, PPK-2) and exopolyphosphatases (PPX-1, PPX-2). We demonstrate that these exopolyphosphatases cumulatively contribute to biofilm formation and survival of M. tuberculosis in nutrient limiting, low oxygen growth conditions and in macrophages. Characterization of single (Δppx2) and double knock out strain (dkppx) of M. tuberculosis demonstrated that these exopolyphosphatases are essential for establishing infection in guinea pigs and mice. Transcriptional profiling revealed that relative to the parental strain the expression of genes belonging to DosR regulon were significantly reduced in mid-log phase cultures of dkppx strain. We also show that PolyP inhibited the autophosphorylation activities associated with DosT and DosS sensor kinases. Host RNA-seq analysis revealed that transcripts involved in various antimicrobial pathways such as apoptosis, autophagy, macrophage activation, calcium signalling, innate and T-cell response were differentially expressed in lung tissues of dkppx strain infected mice. Taken together, we demonstrate that enzymes involved in PolyP homeostasis play a critical role in physiology and virulence of M. tuberculosis. These enzymes are attractive targets for developing novel interventions that might be active against drug-sensitive and drug-resistant M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Cobaias , Camundongos , Mycobacterium tuberculosis/genética , Virulência , Macrófagos
4.
J Biol Chem ; 294(28): 10819-10832, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31113860

RESUMO

Stringent response pathways involving inorganic polyphosphate (PolyP) play an essential role in bacterial stress adaptation and virulence. The intracellular levels of PolyP are modulated by the activities of polyphosphate kinase-1 (PPK1), polyphosphate kinase-2 (PPK2), and exopolyphosphatases (PPXs). The genome of Mycobacterium tuberculosis encodes two functional PPXs, and simultaneous deletion of ppx1 and ppx2 results in a defect in biofilm formation. We demonstrate here that these PPXs cumulatively contribute to the ability of M. tuberculosis to survive in nutrient-limiting, low-oxygen growth conditions and also in macrophages. Characterization of single (Δppx2) and double knockout (dkppx) strains of M. tuberculosis indicated that PPX-mediated PolyP degradation is essential for establishing bacterial infection in guinea pigs. RNA-Seq-based transcriptional profiling revealed that relative to the parental strain, the expression levels of DosR regulon-regulated dormancy genes were significantly reduced in the dkppx mutant strain. In concordance, we also provide evidence that PolyP inhibits the autophosphorylation activities associated with DosT and DosS sensor kinases. The results in this study uncover that enzymes involved in PolyP homeostasis play a critical role in M. tuberculosis physiology and virulence and are attractive targets for developing more effective therapeutic interventions.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Mycobacterium tuberculosis/fisiologia , Polifosfatos/metabolismo , Hidrolases Anidrido Ácido/genética , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Cobaias , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Fosfotransferases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Virulência/efeitos dos fármacos
5.
Angew Chem Int Ed Engl ; 59(52): 23690-23696, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32918839

RESUMO

The invasion of cancer is brought about by continuous interaction of malignant cells with their surrounding tissue microenvironment. Investigating the remodeling of local extracellular matrix (ECM) by invading cells can thus provide fundamental insights into the dynamics of cancer progression. In this paper, we use an active untethered nanomechanical tool, realized as magnetically driven nanomotors, to locally probe a 3D tissue culture environment. We observed that nanomotors preferentially adhere to the cancer-proximal ECM and magnitude of the adhesive force increased with cell lines of higher metastatic ability. We experimentally confirmed that sialic acid linkage specific to cancer-secreted ECM makes it differently charged, which causes this adhesion. In an assay consisting of both cancerous and non-cancerous epithelia, that mimics the in vivo histopathological milieu of a malignant breast tumor, we find that nanomotors preferentially decorate the region around the cancer cells.


Assuntos
Nanotecnologia/métodos , Microambiente Tumoral/genética , Humanos , Fenômenos Mecânicos
6.
Int J Mol Sci ; 20(12)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213021

RESUMO

G protein-coupled receptors (GPCRs) have the propensity to form homo- and heterodimers. Dysfunction of these dimers has been associated with multiple diseases, e.g., pre-eclampsia, schizophrenia, and depression, among others. Over the past two decades, considerable efforts have been made towards the development of screening assays for studying these GPCR dimer complexes in living cells. As a first step, a robust in vitro assay in an overexpression system is essential to identify and characterize specific GPCR-GPCR interactions, followed by methodologies to demonstrate association at endogenous levels and eventually in vivo. This review focuses on protein complementation assays (PCAs) which have been utilized to study GPCR oligomerization. These approaches are typically fluorescence- and luminescence-based, making identification and localization of protein-protein interactions feasible. The GPCRs of interest are fused to complementary fluorescent or luminescent fragments that, upon GPCR di- or oligomerization, may reconstitute to a functional reporter, of which the activity can be measured. Various protein complementation assays have the disadvantage that the interaction between the reconstituted split fragments is irreversible, which can lead to false positive read-outs. Reversible systems offer several advantages, as they do not only allow to follow the kinetics of GPCR-GPCR interactions, but also allow evaluation of receptor complex modulation by ligands (either agonists or antagonists). Protein complementation assays may be used for high throughput screenings as well, which is highly relevant given the growing interest and effort to identify small molecule drugs that could potentially target disease-relevant dimers. In addition to providing an overview on how PCAs have allowed to gain better insights into GPCR-GPCR interactions, this review also aims at providing practical guidance on how to perform PCA-based assays.


Assuntos
Bioensaio , Medições Luminescentes , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Bioensaio/métodos , Bioensaio/normas , Humanos , Ligantes , Medições Luminescentes/métodos , Medições Luminescentes/normas , Ligação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
7.
Inorg Chem ; 56(9): 5352-5360, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394128

RESUMO

A tetrafacial water-soluble molecular barrel (1) was synthesized by coordination driven self-assembly of a symmetrical tetrapyridyl donor (L) with a cis-blocked 90° acceptor [cis-(en)Pd(NO3)2] (en = ethane-1,2-diamine). The open barrel structure of (1) was confirmed by single crystal X-ray diffraction. The presence of a hydrophobic cavity with large windows makes it an ideal candidate for encapsulation and carrying hydrophobic drug like curcumin in an aqueous medium. The barrel (1) encapsulates curcumin inside its molecular cavity and protects highly photosensitive curcumin from photodegradation. The photostability of encapsulated curcumin is due to the absorption of a high proportion of the incident photons by the aromatic walls of 1 with a high absorption cross-sectional area, which helps the walls to shield the guest even against sunlight/UV radiations. As compared to free curcumin in water, we noticed a significant increase in solubility as well as cellular uptake of curcumin upon encapsulation inside the water-soluble molecular barrel (1) in aqueous medium. Fluorescence imaging confirmed that curcumin was delivered into HeLa cancer cells by the aqueous barrel (1) with the retention of its potential anticancer activity. While free curcumin is inactive toward cancer cells in aqueous medium at room temperature due to negligible solubility, the determined IC50 value of ∼14 µM for curcumin in aqueous medium in the presence of the barrel (1) reflects the efficiency of the barrel as a potential curcumin carrier in aqueous medium without any other additives. Thus, two major challenges of increasing the bioavailability and stability of curcumin in aqueous medium even in the presence of UV light have been addressed by using a new supramolecular water-soluble barrel (1) as a drug carrier.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/química , Curcumina/farmacologia , Portadores de Fármacos/química , Paládio/química , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Complexos de Coordenação/toxicidade , Curcumina/química , Curcumina/efeitos da radiação , Portadores de Fármacos/síntese química , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Substâncias Macromoleculares/toxicidade , Solubilidade , Raios Ultravioleta , Água/química
8.
J Biol Chem ; 290(13): 8294-309, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25659431

RESUMO

Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/metabolismo , Nitratos/metabolismo , Fatores de Transcrição/fisiologia , Aerobiose , Genes Bacterianos , Cinética , Mycobacterium tuberculosis/genética , Nitritos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transcrição Gênica
10.
Biochem J ; 469(1): 121-34, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25929189

RESUMO

Two-component systems (TCSs), which contain paired sensor kinase and response regulator proteins, form the primary apparatus for sensing and responding to environmental cues in bacteria. TCSs are thought to be highly specific, displaying minimal cross-talk, primarily due to the co-evolution of the participating proteins. To assess the level of cross-talk between the TCSs of Mycobacterium tuberculosis, we mapped the complete interactome of the M. tuberculosis TCSs using phosphotransfer profiling. Surprisingly, we found extensive cross-talk among the M. tuberculosis TCSs, significantly more than that in the TCSs in Escherichia coli or Caulobacter crescentus, thereby offering an alternate to specificity paradigm in TCS signalling. Nearly half of the interactions we detected were significant novel cross-interactions, unravelling a potentially complex signalling landscape. We classified the TCSs into specific 'one-to-one' and promiscuous 'one-to-many' and 'many-to-one' circuits. Using mathematical modelling, we deduced that the promiscuous signalling observed can explain several currently confounding observations about M. tuberculosis TCSs. Our findings suggest an alternative paradigm of bacterial signalling with significant cross-talk between TCSs yielding potentially complex signalling landscapes.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Biológicos , Mycobacterium tuberculosis/fisiologia , Transdução de Sinais/fisiologia
11.
Chem Commun (Camb) ; 59(85): 12751-12754, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37811588

RESUMO

The cross-talk among reductive and oxidative species (redox cross-talk), especially those derived from sulfur, nitrogen and oxygen, influence several physiological processes including aging. One major hallmark of aging is cellular senescence, which is associated with chronic systemic inflammation. Here, we report a chemical tool that generates nitoxyl (HNO) upon activation by ß-galactosidase, an enzyme that is over-expressed in senescent cells. In a radiation-induced senescence model, the HNO donor suppressed reactive oxygen species (ROS) in a hydrogen sulfide (H2S)-dependent manner. Hence, the newly developed tool provides insights into redox cross-talk and establishes the foundation for new interventions that modulate levels of these species to mitigate oxidative stress and inflammation.


Assuntos
Inflamação , Óxidos de Nitrogênio , Humanos , Oxirredução , Senescência Celular , beta-Galactosidase
12.
EBioMedicine ; 70: 103525, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34392148

RESUMO

BACKGROUND: While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. METHODS: We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. FINDINGS: The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. INTERPRETATION: Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. FUNDING: This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.


Assuntos
COVID-19/genética , Nasofaringe/virologia , Proteoma/genética , Transcriptoma/genética , Adulto , Animais , Biomarcadores/metabolismo , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Estudos de Coortes , Feminino , Células HEK293 , Humanos , Inflamação/genética , Inflamação/virologia , Interleucina-6/genética , Masculino , Mesocricetus , Pessoa de Meia-Idade , Nasofaringe/patologia , Pandemias , Prognóstico , RNA Mensageiro/genética , SARS-CoV-2/patogenicidade , Regulação para Cima/genética , Células Vero , Replicação Viral/genética
13.
Chem Sci ; 12(39): 12939-12949, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34745524

RESUMO

Persulfides and polysulfides, collectively known as the sulfane sulfur pool along with hydrogen sulfide (H2S), play a central role in cellular physiology and disease. Exogenously enhancing these species in cells is an emerging therapeutic paradigm for mitigating oxidative stress and inflammation that are associated with several diseases. In this study, we present a unique approach of using the cell's own enzyme machinery coupled with an array of artificial substrates to enhance the cellular sulfane sulfur pool. We report the synthesis and validation of artificial/unnatural substrates specific for 3-mercaptopyruvate sulfurtransferase (3-MST), an important enzyme that contributes to sulfur trafficking in cells. We demonstrate that these artificial substrates generate persulfides in vitro as well as mediate sulfur transfer to low molecular weight thiols and to cysteine-containing proteins. A nearly 100-fold difference in the rates of H2S production for the various substrates is observed supporting the tunability of persulfide generation by the 3-MST enzyme/artificial substrate system. Next, we show that the substrate 1a permeates cells and is selectively turned over by 3-MST to generate 3-MST-persulfide, which protects against reactive oxygen species-induced lethality. Lastly, in a mouse model, 1a is found to significantly mitigate neuroinflammation in the brain tissue. Together, the approach that we have developed allows for the on-demand generation of persulfides in vitro and in vivo using a range of shelf-stable, artificial substrates of 3-MST, while opening up possibilities of harnessing these molecules for therapeutic applications.

14.
Cell Surf ; 6: 100043, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803022

RESUMO

Mycobacterium chelonae is an environmental, non-tuberculous mycobacterial species, capable of causing infections in humans. Biofilm formation is a key strategy used by M. chelonae in colonising niches in the environment and in the host. We studied a water-air interface (pellicle) biofilm of M. chelonae using a wide array of approaches to outline the molecular structure and composition of the biofilm. Scanning electron micrographs showed that M. chelonae biofilms produced an extracellular matrix. Using a combination of biochemical analysis, Raman spectroscopy, and fluorescence microscopy, we showed the matrix to consist of proteins, carbohydrates, lipids and eDNA. Glucose was the predominant sugar present in the biofilm matrix, and its relative abundance decreased in late (established) biofilms. RNA-seq analysis of the biofilms showed upregulation of genes involved in redox metabolism. Additionally, genes involved in mycolic acid, other lipid and glyoxylate metabolism were also upregulated in the early biofilms.

15.
J Phys Condens Matter ; 32(22): 224001, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31978922

RESUMO

A rheological probe that can measure mechanical properties of biological milieu at well-defined locations with high spatial resolution, on a time scale faster than most biological processes, can further improve our understanding of how living systems operate and behave. Here, we demonstrate nanorobots actively driven in realistic ex vivo biological systems for fast mechanical measurements with high spatial accuracy. In the various demonstrations of magnetic nanobots as mechanical probes, we report the first direct observation of the internalization of probes by a living cell, the accurate measurement of the 'fluid phase' cytoplasmic viscosity of ~200 cP for a HeLa cell, demonstration of intracellular measurements in cells derived from human patients; all of which establish the strength of this novel technique for measurements in both intra- and extracellular environments.


Assuntos
Espaço Extracelular/metabolismo , Espaço Intracelular/metabolismo , Nanotubos , Células HeLa , Humanos , Fenômenos Mecânicos , Reologia , Viscosidade
16.
Chem Asian J ; 14(24): 4717-4724, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31502759

RESUMO

The emergence of hydrogen sulfide (H2 S) as an important signalling molecule in redox biology with therapeutic potential has triggered interest in generating this molecule within cells. One strategy that has been proposed is to use carbonyl sulfide (COS) as a surrogate for hydrogen sulfide. Small molecules that generate COS have been shown to produce hydrogen sulfide in the presence of carbonic anhydrase, a widely prevalent enzyme. However, other studies have indicated that COS may have biological effects which are distinct from H2 S. Thus, it would be useful to develop tools to compare (and contrast) effects of COS and H2 S. Here we report enzyme-activated COS donors that are capable of inducing protein persulfidation, which is symptomatic of generation of hydrogen sulfide. The COS donors are also capable of mitigating stress induced by elevated reactive oxygen species. Together, our data suggests that the effects of COS parallel that of hydrogen sulfide, laying the foundation for further development of these donors as possible therapeutic agents.


Assuntos
Substâncias Protetoras/farmacologia , Proteínas/metabolismo , Óxidos de Enxofre/metabolismo , Tiocarbamatos/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/síntese química , Substâncias Protetoras/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos/síntese química , Tiocarbamatos/metabolismo
17.
Bio Protoc ; 9(13): e3291, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654804

RESUMO

Protein acetylation is one of the standard post-translational modifications found in proteins across all organisms, along with phosphorylation which regulates diverse cellular processes. Acetylation of proteins can be enzymatically catalyzed through acetyltransferases, acetyl CoA synthetases or non-enzymatically through acyl carrier metabolic intermediates. In this protocol, using response regulator proteins as targets we describe the experimental strategy for probing the occurrence of acetylation using purified recombinant proteins in an in vitro setup. Further using M. smegmatis strains overexpressing the wild type or mutant response regulator protein, we also describe how in vivo acetylation can be validated in Mycobacterial proteins. The described approach can be used for analyzing acetylation of any mycobacterial protein under both in vitro and in vivo conditions.

18.
Biomolecules ; 9(8)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416253

RESUMO

The interplay between the dopamine (DA) and opioid systems in the brain is known to modulate the additive effects of substances of abuse. On one hand, opioids serve mankind by their analgesic properties, which are mediated via the mu opioid receptor (MOR), a Class A G protein-coupled receptor (GPCR), but on the other hand, they pose a potential threat by causing undesired side effects such as tolerance and dependence, for which the exact molecular mechanism is still unknown. Using human embryonic kidney 293T (HEK 293T) and HeLa cells transfected with MOR and the dopamine D2 receptor (D2R), we demonstrate that these receptors heterodimerize, using an array of biochemical and biophysical techniques such as coimmunoprecipitation (co-IP), bioluminescence resonance energy transfer (BRET1), FÓ§rster resonance energy transfer (FRET), and functional complementation of a split luciferase. Furthermore, live cell imaging revealed that D2LR, when coexpressed with MOR, slowed down internalization of MOR, following activation with the MOR agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO).


Assuntos
Encefalinas/farmacologia , Receptores de Dopamina D2/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Células Cultivadas , Dimerização , Encefalinas/química , Células HEK293 , Células HeLa , Humanos , Receptores de Dopamina D2/química , Receptores Opioides mu/química
19.
Int Rev Cell Mol Biol ; 338: 111-140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29699690

RESUMO

ERK1/2 (extracellular signal-regulated protein kinases) are the nodal proteins that regulate diverse cellular functions primarily in response to activation from receptor tyrosine kinases (RTKs). Not only is ERK activated through a variety of RTKs, but noncanonical signaling through GPCRs also activates them. Such multimodal activation allows appropriate integration of many inputs to critical cell fate decisions such as proliferation and differentiation that MAP kinases typically regulate. MAP kinases also regulate many polar responses such as apoptosis and proliferation, dedifferentiation-differentiation, and the diversity in the outcomes though the same terminal molecule can be explained based on differences in the activation dynamics and rates. However, two processes have now been established as drivers for most of the diversity recorded in the outcomes of MAP kinase signaling. These parameters are cellular compartmentalization, i.e., spatial confinement of the molecules participating in a pathway and changes in the kinetics of the activation-deactivation, i.e., temporal regulation. While phosphorylation is the key to activating responses, specifically for ERK, the terminal MAP kinase, it is the spatiotemporal dynamics that governs the outcome generated by it. This chapter reviews our present understanding of the spatial and temporal regulation of MAP kinase cascade and the ERK activity, specifically through GPCRs.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ativação Enzimática , Humanos , Modelos Biológicos , Transdução de Sinais
20.
Int Rev Cell Mol Biol ; 338: 79-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29699693

RESUMO

GPCRs, the 7-TM receptors, represent a class of cell surface receptors which modulate a variety of physiological responses. The serpentine structure in addition to contributing the diversity of stimuli these receptors can sense also provides flexibility to the extracellular and intracellular regions where other proteins can interact with and can form functionally active multimeric entities. The range in signaling and physiological responses generated by these receptors can be attributed to a large repertoire of the receptor subtypes as well as their differential coupling to various classes of G-protein subunits and other proteins which facilitate multistate activation. A multistate GPCR can engage diverse signaling molecules, thereby modulating not only the canonical cellular responses but also noncanonical responses typically associated with activation of other cascades such as RTK and MAPK/ERK signaling. Given the crucial involvement of MAP kinase/ERK signaling in cell fate determination specially with respect to regulating cell proliferation, cellular apoptosis, and survival, GPCR-mediated cross-activation of MAPK has been explored in various systems and shown to involve functional integration of multiple pathways. This review describes the present knowledge of the different mechanisms of ERK activation downstream of GPCRs and our present understanding of receptor-dependent and -independent MAPK activation cascades.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Ativação Enzimática , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA