Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(1): 391-404, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38095213

RESUMO

The efficacy of neural electrode stimulation and recording hinges significantly on the choice of a neural electrode interface material. Transition metal carbides (TMCs), particularly titanium carbide (TiC), have demonstrated exceptional chemical stability and high electrical conductivity. Yet, the fabrication of TiC thin films and their potential application as neural electrode interfaces remains relatively unexplored. Herein, we present a systematic examination of TiC thin films synthesized through nonreactive radio frequency (RF) magnetron sputtering. TiC films were optimized toward high areal capacitance, low impedance, and stable electrochemical cyclability. We varied the RF power and deposition pressure to pinpoint the optimal properties, focusing on the deposition rate, surface roughness, crystallinity, and elemental composition to achieve high areal capacitance and low impedance. The best-performing TiC film showed an areal capacitance of 475 µF/cm2 with a capacitance retention of 93% after 5000 cycles. In addition, the electrochemical performance of the optimum film under varying scanning rates demonstrated a stable electrochemical performance even under dynamic and fast-changing stimulation conditions. Furthermore, the in vitro cell culture for 3 weeks revealed excellent biocompatibility, promoting cell growth compared with a control substrate. This work presents a novel contribution, highlighting the potential of sputtered TiC thin films as robust neural electrode interface materials.


Assuntos
Técnicas de Cultura de Células , Eletrodos
2.
ACS Nano ; 17(11): 10010-10018, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249346

RESUMO

Growing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated. However, its role in the growth mechanism has not been intensively investigated. Here, we report the experimental conformation of an interfacial reconstructed (IR) layer within the substrate-epilayer gap. Such an IR layer profoundly impacts the orientations of nucleating TMDs domains and, thus, affects the materials' properties. These findings provide deeper insights into the buried interface that could have profound implications for the development of TMD-based electronics and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA