Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 42(1): e111389, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36444797

RESUMO

The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.


Assuntos
Inflamassomos , Peritonite , Camundongos , Humanos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Desacetilase 6 de Histona/genética , alfa-Tocoferol , Ácido Úrico , Peritonite/induzido quimicamente , Lisossomos , Camundongos Endogâmicos C57BL
2.
Mol Cell ; 67(3): 471-483.e7, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28712724

RESUMO

Mutations in mitochondrial acylglycerol kinase (AGK) cause Sengers syndrome, which is characterized by cataracts, hypertrophic cardiomyopathy, and skeletal myopathy. AGK generates phosphatidic acid and lysophosphatidic acid, bioactive phospholipids involved in lipid signaling and the regulation of tumor progression. However, the molecular mechanisms of the mitochondrial pathology remain enigmatic. Determining its mitochondrial interactome, we have identified AGK as a constituent of the TIM22 complex in the mitochondrial inner membrane. AGK assembles with TIMM22 and TIMM29 and supports the import of a subset of multi-spanning membrane proteins. The function of AGK as a subunit of the TIM22 complex does not depend on its kinase activity. However, enzymatically active AGK is required to maintain mitochondrial cristae morphogenesis and the apoptotic resistance of cells. The dual function of AGK as lipid kinase and constituent of the TIM22 complex reveals that disturbances in both phospholipid metabolism and mitochondrial protein biogenesis contribute to the pathogenesis of Sengers syndrome.


Assuntos
Cardiomiopatias/enzimologia , Catarata/enzimologia , Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Translocador 1 do Nucleotídeo Adenina/metabolismo , Antiporters/metabolismo , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Catarata/genética , Catarata/patologia , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos , Mutação , Fenótipo , Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte Proteico , Fatores de Tempo , Transfecção
3.
EMBO J ; 37(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29301859

RESUMO

Intramembrane-cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain-containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL-mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/metabolismo , Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Apoptose , Células HEK293 , Células HeLa , Humanos , Mitofagia , Homologia de Sequência
4.
EMBO Rep ; 17(12): 1844-1856, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27737933

RESUMO

The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring-like structures and locally specify the protein-lipid composition in a variety of cellular membranes. Stomatin-like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i-AAA protease YME1L, which we term the SPY complex (for SLP2-PARL-YME1L). Association with SLP2 in the SPY complex regulates PARL-mediated processing of PTEN-induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress-activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1-mediated processing of the dynamin-like GTPase OPA1 allowing stress-induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Sanguíneas/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Metaloproteases/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Peptídeo Hidrolases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteólise
5.
Genes Cells ; 21(5): 408-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26935475

RESUMO

Mitochondrial morphology is dynamically regulated by fusion and fission. Several GTPase proteins control fusion and fission, and posttranslational modifications of these proteins are important for the regulation. However, it has not been clarified how the fusion and fission is balanced. Here, we report the molecular mechanism to regulate mitochondrial morphology in mammalian cells. Ablation of the mitochondrial fission, by repression of Drp1 or Mff, or by over-expression of MiD49 or MiD51, results in a reduction in the fusion GTPase mitofusins (Mfn1 and Mfn2) in outer membrane and long form of OPA1 (L-OPA1) in inner membrane. RNAi- or CRISPR-induced ablation of Drp1 in HeLa cells enhanced the degradation of Mfns via the ubiquitin-proteasome system (UPS). We further found that UPS-related protein BAT3/BAG6, here we identified as Mfn2-interacting protein, was implicated in the turnover of Mfns in the absence of mitochondrial fission. Ablation of the mitochondrial fission also enhanced the proteolytic cleavage of L-OPA1 to soluble S-OPA1, and the OPA1 processing was reversed by inhibition of the inner membrane protease OMA1 independent on the mitochondrial membrane potential. Our findings showed that the distinct degradation systems of the mitochondrial fusion proteins in different locations are enhanced in response to the mitochondrial morphology.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Dinaminas , Técnicas de Inativação de Genes , Células HeLa , Homeostase , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo
6.
J Med Genet ; 53(10): 690-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27208207

RESUMO

BACKGROUND: Cell survival critically depends on the integrity of mitochondria, which play a pivotal role during apoptosis. Extensive mitochondrial damage promotes release of pro-apoptotic factors from the intermembrane space of mitochondria. Released mitochondrial proteins include Smac/DIABLO and HTRA2/Omi, which inhibit the cytosolic E3 ubiquitin ligase XIAP and other inhibitors of apoptosis proteins. AIMS: Here we investigated the cause of extreme hypertonia at birth, alternating with hypotonia, with the subsequent appearance of extrapyramidal symptoms, lack of psychomotor development, microcephaly, intractable seizures and early death in four patients from two unrelated families. The patients showed lactic acidemia, 3-methylglutaconic aciduria, intermittent neutropenia, evolving brain atrophy and disturbed cristae structure in muscle mitochondria. METHODS AND RESULTS: Using whole-exome sequencing, we identified missplicing mutation and a 5 bp deletion in HTRA2, encoding HTRA2/Omi. This protein was completely absent from the patients' fibroblasts, whose growth was impaired and which were hypersensitive to apoptosis. Expression of HtrA2/Omi or of the proteolytically inactive HTRA2/Omi protein restored the cells' apoptotic resistance. However, cell growth was only restored by the proteolytically active protein. CONCLUSIONS: This is the first report of recessive deleterious mutations in HTRA2 in human. The clinical phenotype, the increased apoptotic susceptibility and the impaired cell growth recapitulate those observed in the Htra2 knockout mice and in mutant mice with proteolytically inactive HTRA2/Omi. Together, they underscore the importance of both chaperone and proteolytic activities of HTRA2/Omi for balanced apoptosis sensitivity and for brain development. Absence of HTRA2/Omi is associated with severe neurodegenerative disorder of infancy, abnormal mitochondria, 3-methylglutaconic aciduria and increased sensitivity to apoptosis.


Assuntos
Apoptose , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação , Doenças Neurodegenerativas/metabolismo , Serina Endopeptidases/genética , Animais , Análise Mutacional de DNA , Exoma , Evolução Fatal , Feminino , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/fisiopatologia , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Linhagem , Síndrome
7.
J Biol Chem ; 289(19): 12946-61, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24668814

RESUMO

Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Paraplegia/metabolismo , Paraplegia/patologia , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Doenças Genéticas Inatas/genética , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Paraplegia/genética , Proteômica , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas de Transporte Vesicular
8.
J Biol Chem ; 289(37): 25639-54, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25077969

RESUMO

Sonic hedgehog (Shh) is a secreted morphogen that controls the patterning and growth of various tissues in the developing vertebrate embryo, including the central nervous system. Ablation of the FK506-binding protein 38 (FKBP38) gene results in activation of the Shh signaling pathway in mouse embryos, but the molecular mechanism by which FKBP38 suppresses Shh signaling has remained unclear. With the use of a proteomics approach, we have now identified ANKMY2, a protein with three ankyrin repeats and a MYND (myeloid, Nervy, and DEAF-1)-type Zn(2+) finger domain, as a molecule that interacts with FKBP38. Co-immunoprecipitation analysis confirmed that endogenous FKBP38 and ANKMY2 interact in the mouse brain. Depletion or overexpression of ANKMY2 resulted in down- and up-regulation of Shh signaling, respectively, in mouse embryonic fibroblasts. Furthermore, combined depletion of both FKBP38 and ANKMY2 attenuated Shh signaling in these cells, suggesting that ANKMY2 acts downstream of FKBP38 to activate the Shh signaling pathway. Targeting of the zebrafish ortholog of mouse Ankmy2 (ankmy2a) in fish embryos with an antisense morpholino oligonucleotide conferred a phenotype reflecting loss of function of the Shh pathway, suggesting that the regulation of Shh signaling by ANKMY2 is conserved between mammals and fish. Our findings thus indicate that the FKBP38-ANKMY2 axis plays a key role in regulation of Shh signaling in vivo.


Assuntos
Proteínas de Transporte/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Camundongos , Proteínas de Ligação a Tacrolimo/genética , Transativadores/metabolismo , Peixe-Zebra/genética
9.
Genes Cells ; 19(2): 97-111, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24251978

RESUMO

Protrudin is a membrane protein that regulates polarized vesicular transport. Now, we have identified a novel isoform of protrudin (protrudin-L) that contains an additional seven amino acids between the FFAT motif and the coiled-coil domain compared with the conventional isoform (protrudin-S) as a result of alternative splicing of a microexon (exon L). Protrudin-L mRNA was found to be mostly restricted to the central nervous system in mice, whereas protrudin-S mRNA was detected in all tissues examined. With the use of a splicing reporter minigene that produces two distinct fluorescent proteins in a manner dependent on the splicing pattern of protrudin transcripts, we found that most neurons express protrudin-L, whereas astrocytes express both protrudin isoforms and oligodendrocytes express only protrudin-S. Protrudin-L associated to a greater extent with vesicle-associated membrane protein-associated protein (VAP) than protrudin-S. Expression of protrudin-L in hippocampal neurons of protrudin-deficient mice also promoted neurite outgrowth more efficiently than protrudin-S. Our results suggest that protrudin-L is a neuron-specific protrudin isoform that promotes axonal elongation and contributes to the establishment of neuronal polarity.


Assuntos
Neurônios/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas R-SNARE/genética , Proteínas de Transporte Vesicular/genética
10.
Autophagy ; 18(10): 2323-2332, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35025696

RESUMO

Maintenance of bone integrity is mediated by the balanced actions of osteoblasts and osteoclasts. Because macroautophagy/autophagy regulates osteoblast mineralization, osteoclast differentiation, and their secretion from osteoclast cells, autophagy deficiency in osteoblasts or osteoclasts can disrupt this balance. However, it remains unclear whether upregulation of autophagy becomes beneficial for suppression of bone-associated diseases. In this study, we found that genetic upregulation of autophagy in osteoblasts facilitated bone formation. We generated mice in which autophagy was specifically upregulated in osteoblasts by deleting the gene encoding RUBCN/Rubicon, a negative regulator of autophagy. The rubcnflox/flox;Sp7/Osterix-Cre mice showed progressive skeletal abnormalities in femur bones. Consistent with this, RUBCN deficiency in osteoblasts resulted in elevated differentiation and mineralization, as well as an increase in the elevated expression of key transcription factors involved in osteoblast function such as Runx2 and Bglap/Osteocalcin. Furthermore, RUBCN deficiency in osteoblasts accelerated autophagic degradation of NOTCH intracellular domain (NICD) and downregulated the NOTCH signaling pathway, which negatively regulates osteoblast differentiation. Notably, osteoblast-specific deletion of RUBCN alleviated the phenotype in a mouse model of osteoporosis. We conclude that RUBCN is a key regulator of bone homeostasis. On the basis of these findings, we propose that medications targeting RUBCN or autophagic degradation of NICD could be used to treat age-related osteoporosis and bone fracture.Abbreviations: ALPL: alkaline phosphatase, liver/bone/kidney; BCIP/NBT: 5-bromo-4-chloro-3'-indolyl phosphate/nitro blue tetrazolium; BMD: bone mineral density; BV/TV: bone volume/total bone volume; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NICD: NOTCH intracellular domain; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RUBCN/Rubicon: RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein; SERM: selective estrogen receptor modulator; TNFRSF11B/OCIF: tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin).


Assuntos
Osteogênese , Osteoporose , Fosfatase Alcalina/metabolismo , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cisteína/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoblastos/patologia , Osteocalcina/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Osteoprotegerina/metabolismo , Fosfatos/metabolismo , Receptores Notch , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
11.
Nat Commun ; 11(1): 4150, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811819

RESUMO

The systemic decline in autophagic activity with age impairs homeostasis in several tissues, leading to age-related diseases. A mechanistic understanding of adipocyte dysfunction with age could help to prevent age-related metabolic disorders, but the role of autophagy in aged adipocytes remains unclear. Here we show that, in contrast to other tissues, aged adipocytes upregulate autophagy due to a decline in the levels of Rubicon, a negative regulator of autophagy. Rubicon knockout in adipocytes causes fat atrophy and hepatic lipid accumulation due to reductions in the expression of adipogenic genes, which can be recovered by activation of PPARγ. SRC-1 and TIF2, coactivators of PPARγ, are degraded by autophagy in a manner that depends on their binding to GABARAP family proteins, and are significantly downregulated in Rubicon-ablated or aged adipocytes. Hence, we propose that age-dependent decline in adipose Rubicon exacerbates metabolic disorders by promoting excess autophagic degradation of SRC-1 and TIF2.


Assuntos
Adipócitos/metabolismo , Envelhecimento/fisiologia , Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças Metabólicas/metabolismo , Adipócitos/patologia , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Técnicas de Inativação de Genes , Glucose/genética , Glucose/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , PPAR gama/metabolismo
12.
Nat Cell Biol ; 19(7): 856-863, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28628083

RESUMO

Mitochondria are highly dynamic organelles that undergo frequent fusion and fission. Optic atrophy 1 (OPA1) is an essential GTPase protein for both mitochondrial inner membrane (IM) fusion and cristae morphology. Under mitochondria-stress conditions, membrane-anchored L-OPA1 is proteolytically cleaved to form peripheral S-OPA1, leading to the selection of damaged mitochondria for mitophagy. However, molecular details of the selective mitochondrial fusion are less well understood. Here, we showed that L-OPA1 and cardiolipin (CL) cooperate in heterotypic mitochondrial IM fusion. We reconstituted an in vitro membrane fusion reaction using purified human L-OPA1 protein expressed in silkworm, and found that L-OPA1 on one side of the membrane and CL on the other side are sufficient for fusion. GTP-independent membrane tethering through L-OPA1 and CL primes the subsequent GTP-hydrolysis-dependent fusion, which can be modulated by the presence of S-OPA1. These results unveil the most minimal intracellular membrane fusion machinery. In contrast, independent of CL, a homotypic trans-OPA1 interaction mediates membrane tethering, thereby supporting the cristae structure. Thus, multiple OPA1 functions are modulated by local CL conditions for regulation of mitochondrial morphology and quality control.


Assuntos
Cardiolipinas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Membranas Mitocondriais/enzimologia , Animais , Animais Geneticamente Modificados , Bombyx/enzimologia , Bombyx/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Marcação de Genes , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólise , Lipossomos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção
13.
Nat Cell Biol ; 19(4): 318-328, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28288130

RESUMO

Mitochondria drive apoptosis by releasing pro-apoptotic proteins that promote caspase activation in the cytosol. The rhomboid protease PARL, an intramembrane cleaving peptidase in the inner membrane, regulates mitophagy and plays an ill-defined role in apoptosis. Here, we employed PARL-based proteomics to define its substrate spectrum. Our data identified the mitochondrial pro-apoptotic protein Smac (also known as DIABLO) as a PARL substrate. In apoptotic cells, Smac is released into the cytosol and promotes caspase activity by inhibiting inhibitors of apoptosis (IAPs). Intramembrane cleavage of Smac by PARL generates an amino-terminal IAP-binding motif, which is required for its apoptotic activity. Loss of PARL impairs proteolytic maturation of Smac, which fails to bind XIAP. Smac peptidomimetics, downregulation of XIAP or cytosolic expression of cleaved Smac restores apoptosis in PARL-deficient cells. Our results reveal a pro-apoptotic function of PARL and identify PARL-mediated Smac processing and cytochrome c release facilitated by OPA1-dependent cristae remodelling as two independent pro-apoptotic pathways in mitochondria.


Assuntos
Apoptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Citocromos c/metabolismo , Citosol/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/química , Metaloproteases/deficiência , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Proteômica , Especificidade por Substrato , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
14.
Nat Commun ; 4: 1410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23361001

RESUMO

Mitophagy refers to the degradation of mitochondria by the autophagy system that is regulated by Parkin and PINK1, mutations in the genes for which have been linked to Parkinson's disease. Here we show that certain mitochondrial outer membrane proteins, including FKBP38 and Bcl-2, translocate from the mitochondria to the endoplasmic reticulum (ER) during mitophagy, thereby escaping degradation by autophagosomes. This translocation depends on the ubiquitylation activity of Parkin and on microtubule polymerization. Photoconversion analysis confirmed that FKBP38 detected at the ER during mitophagy indeed represents preexisting protein transported from the mitochondria. The escape of FKBP38 and Bcl-2 from the mitochondria is determined by the number of basic amino acids in their COOH-terminal signal sequences. Furthermore, the translocation of FKBP38 is essential for the suppression of apoptosis during mitophagy. Our results thus show that not all mitochondrial proteins are degraded during mitophagy, with some proteins being evacuated to the ER to prevent unwanted apoptosis.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Sequência de Aminoácidos , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Embrião de Mamíferos/citologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Células HeLa , Humanos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Mitofagia/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína bcl-X/metabolismo
15.
J Biol Chem ; 284(20): 13766-13777, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19289470

RESUMO

Protrudin is a protein that contains a Rab11-binding domain and a FYVE (lipid-binding) domain and that functions to promote neurite formation through interaction with the GDP-bound form of Rab11. Protrudin also contains a short sequence motif designated FFAT (two phenylalanines in an acidic tract), which in other proteins has been shown to mediate binding to vesicle-associated membrane protein-associated protein (VAP). We now show that protrudin associates and colocalizes with VAP-A, an isoform of VAP expressed in the endoplasmic reticulum. Both the interaction between protrudin and VAP-A as well as the induction of process formation by protrudin were markedly inhibited by mutation of the FFAT motif. Furthermore, depletion of VAP-A by RNA interference resulted in mislocalization of protrudin as well as in inhibition of neurite outgrowth induced by nerve growth factor in rat pheochromocytoma PC12 cells. These defects resulting from depletion of endogenous rat VAP-A in PC12 cells were corrected by forced expression of (RNA interference-resistant) human VAP-A but not by VAP-A mutants that have lost the ability to interact with protrudin. These results suggest that VAP-A is an important regulator both of the subcellular localization of protrudin and of its ability to stimulate neurite outgrowth.


Assuntos
Proteínas de Transporte/metabolismo , Neuritos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Proteínas de Transporte/genética , Células HeLa , Humanos , Mutação , Células PC12 , Estrutura Terciária de Proteína/fisiologia , Ratos , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA