Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034253

RESUMO

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Assuntos
Axônios/metabolismo , Condutos Olfatórios/embriologia , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Condutos Olfatórios/citologia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
2.
J Neurophysiol ; 130(6): 1464-1479, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910664

RESUMO

To understand the neural mechanisms of perceptual filling-in at the blind spot (BS), we analyzed neural activity in the region representing the visual field corresponding to the BS (BS region) in the primary visual cortex (V1) of the macaque monkey. We inserted a linear array electrode into the BS region or surrounding region and recorded the multiunit activities (MUAs) and local field potential (LFP). We examined the responses of MUAs and LFP to a large visual stimulus that entirely covered the BS (surface stimuli) while the monkey performed a visual fixation task in either the monocular condition without receiving direct retinal input or the binocular condition receiving retinal information. We observed clear MUA responses in the deep layers within the BS region under monocular conditions, confirming previous reports that V1 neurons in the BS region are activated when perceptual filling-in occurs. Current source density analysis using LFP showed that MUA responses were mainly observed in layer 5. Although LFP responses were generally stronger in the binocular condition than in the monocular condition, a notable exception was observed in the BS region. LFP responses in the low-beta band in the superficial layers were stronger in the monocular condition than in the binocular condition. These results suggest that low-beta activity in the superficial layer is related to the occurrence of perceptual filling-in in the BS. The origin of this activity is considered to be feedback signals from the extrastriate areas to the V1.NEW & NOTEWORTHY Two characteristic activities were induced in the blind spot (BS) region in response to the stimulus, causing perceptual filling-in: 1) beta-band LFP responses in the superficial layers and 2) neuronal responses in the deep layers, mainly in layer 5. These data suggest that the feedback signal from the extrastriate areas to the BS region in V1 is involved in perceptual filling-in.


Assuntos
Macaca , Percepção Visual , Animais , Percepção Visual/fisiologia , Córtex Visual Primário , Campos Visuais , Retina/fisiologia , Estimulação Luminosa/métodos
3.
Nat Commun ; 8: 16011, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28685774

RESUMO

Fox odour 2,4,5-trimethyl thiazoline (TMT) is known to activate multiple glomeruli in the mouse olfactory bulb (OB) and elicits strong fear responses. In this study, we screened TMT-reactive odourant receptors and identified Olfr1019 with high ligand reactivity and selectivity, whose glomeruli are located in the posterodorsal OB. In the channelrhodopsin knock-in mice for Olfr1019, TMT-responsive olfactory-cortical regions were activated by photostimulation, leading to the induction of immobility, but not aversive behaviour. Distribution of photoactivation signals was overlapped with that of TMT-induced signals, but restricted to the narrower regions. In the knockout mice, immobility responses were reduced, but not entirely abolished likely due to the compensatory function of other TMT-responsive glomeruli. Our results demonstrate that the activation of a single glomerular species in the posterodorsal OB is sufficient to elicit immobility responses and that TMT-induced fear may be separated into at least two different components of immobility and aversion.


Assuntos
Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Percepção Olfatória/fisiologia , Receptores Odorantes/genética , Olfato/fisiologia , Tiazóis/farmacologia , Animais , Agentes Aversivos/isolamento & purificação , Agentes Aversivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Medo/psicologia , Fezes/química , Raposas , Reação de Congelamento Cataléptica/fisiologia , Expressão Gênica , Técnicas de Introdução de Genes , Masculino , Camundongos , Odorantes/análise , Bulbo Olfatório/fisiologia , Estimulação Luminosa , Receptores Odorantes/metabolismo , Técnicas Estereotáxicas , Tiazóis/isolamento & purificação
4.
Sci Signal ; 2(60): ra9, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19261596

RESUMO

Deciphering olfactory encoding requires a thorough description of the ligands that activate each odorant receptor (OR). In mammalian systems, however, ligands are known for fewer than 50 of more than 1400 human and mouse ORs, greatly limiting our understanding of olfactory coding. We performed high-throughput screening of 93 odorants against 464 ORs expressed in heterologous cells and identified agonists for 52 mouse and 10 human ORs. We used the resulting interaction profiles to develop a predictive model relating physicochemical odorant properties, OR sequences, and their interactions. Our results provide a basis for translating odorants into receptor neuron responses and for unraveling mammalian odor coding.


Assuntos
Modelos Biológicos , Odorantes/análise , Receptores Odorantes/metabolismo , Olfato/fisiologia , Algoritmos , Animais , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Luciferases , Camundongos , Receptores Odorantes/agonistas , Receptores Odorantes/genética , Especificidade da Espécie , Relação Estrutura-Atividade
5.
Cell ; 119(5): 679-91, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15550249

RESUMO

Transport of G protein-coupled receptors (GPCRs) to the cell surface membrane is critical in order for the receptors to recognize their ligands. However, mammalian GPCR odorant receptors (ORs), when heterologously expressed in cells, are poorly expressed on the cell surface. Here we show that the transmembrane proteins RTP1 and RTP2 promote functional cell surface expression of ORs expressed in HEK293T cells. Genes encoding these proteins are expressed specifically in olfactory neurons. These proteins are associated with OR proteins and enhance the OR responses to odorants. Similar although weaker effects were seen with a third protein, REEP1. These findings suggest that RTP1 and RTP2 in particular play significant roles in the translocation of ORs to the plasma membrane as well as in the functioning of ORs. We have used this approach to identify active odorant ligands for ORs, providing a platform for screening the chemical selectivity of the large OR family.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , DNA Complementar/análise , DNA Complementar/genética , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/fisiologia , Humanos , Ligantes , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios Receptores Olfatórios/efeitos dos fármacos , Filogenia , Transporte Proteico/fisiologia , Receptores Odorantes/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA