Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 662: 18-25, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37094429

RESUMO

The number of patients with end-stage renal failure is increasing annually worldwide and the problem is compounded by a shortage of renal transplantation donors. In our previous research, we have shown that transplantation of renal progenitor cells into the nephrogenic region of heterologous fetuses can induce the development of nephrons. We have also developed transgenic mice in which specific renal progenitor cells can be removed by drugs. By combining these two technologies, we have succeeded in generating human-mouse chimeric kidneys in fetal mice. We hope to apply these technologies to regenerative medicine. The quality of nephron progenitor cells (NPCs) derived from human pluripotent stem cells is important for the generation of chimeric kidneys, but there is currently no simple evaluation system for the chimerogenic potential of human NPCs. In this study, we focused on the fact that the re-aggregation of mouse renal progenitor cells can be used for nephron formation, even when merged into single cells. First, we examined the conditions under which nephron formation is likely to occur in mice during re-aggregation. Next, to improve the differentiation potential of human NPCs derived from pluripotent stem cells, NPCs were sorted using Integrin subunit alpha 8 (ITGA8). Finally, we demonstrated chimera formation between different species by mixing mouse cells with purified, selectively-induced human NPCs under optimum conditions. We observed these chimeric organoids at different time points to learn about these human-mouse chimeric structures at various stages of renal development. We found that the rate of chimera formation was affected by the purity of the human NPCs and the cell ratios used. We demonstrated that chimeric nephrons can be generated using a simple model, even between distant species. We believe that this admixture of human and mouse renal progenitor cells is a promising technology with potential application for the evaluation of the chimera formation abilities of NPCs.


Assuntos
Rim , Néfrons , Humanos , Camundongos , Animais , Células-Tronco Embrionárias , Diferenciação Celular , Camundongos Transgênicos , Organoides
2.
BMC Nephrol ; 21(1): 219, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517664

RESUMO

BACKGROUND: Chronic kidney disease (CKD) disrupts mineral homeostasis and its main underlying cause is secondary hyperparathyroidism (SHPT). We previously reported that calcium-sensing receptor (CaSR) mRNA and protein expression in parathyroid glands (PTGs) significantly decreased in a CKD rat model induced by a 5/6 nephrectomy that were fed a high phosphorus diet. However, there was a significant difference in the severity of CKD between high phosphorus and adequate phosphorus diet groups. Thus, it was unclear whether CKD environment or the high phosphorus diet influenced CaSR expression, and the underlying mechanism remains largely unknown. METHODS: CKD was induced in rats with 0.75% adenine-containing diet. CKD and control rats were maintained for 5 days and 2 weeks on diets with 0.7% or 1.3% phosphorus. For gene expression analysis, quantitative real-time polymerase chain reaction was performed with TaqMan probes. Protein expression was analyzed by immunohistochemistry. RESULTS: PTG CaSR expression significantly decreased in the presence of a severe CKD environment, even without the high phosphate load. Ki67 expressing cells in PTGs were significantly higher only in the CKD rats fed a high phosphorus diet. Furthermore, among the many genes that could affect CaSR expression, only vitamin D receptor (VDR) and glial cells missing 2 (Gcm2) showed significant changes. Moreover, Gcm2 was significantly reduced at an early stage without significant changes in serum calcium, phosphorus and 1,25(OH)2 vitamin D, and there was no significant reduction in CaSR and VDR expressions. Then, significantly elevated Ki67-positive cell numbers were also only observed in the early CKD PTGs with high-phosphorus diets. CONCLUSIONS: Our data suggest that the cause of the decreased PTG CaSR expression is the reduction in VDR and Gcm2 expression; Gcm2 may play a role in the onset and progression of SHPT.


Assuntos
Proteínas Nucleares/metabolismo , Glândulas Paratireoides/metabolismo , Fósforo , Receptores de Calcitriol/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Insuficiência Renal Crônica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Dieta , Modelos Animais de Doenças , Expressão Gênica , Hiperparatireoidismo Secundário , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/genética
3.
J Am Soc Nephrol ; 30(12): 2293-2305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548350

RESUMO

BACKGROUND: The limited availability of donor kidneys for transplantation has spurred interest in investigating alternative strategies, such as regenerating organs from stem cells transplanted into animal embryos. However, there is no known method for transplanting cells into later-stage embryos, which may be the most suitable host stages for organogenesis, particularly into regions useful for kidney regeneration. METHODS: We demonstrated accurate transplantation of renal progenitor cells expressing green fluorescent protein to the fetal kidney development area by incising the opaque uterine muscle layer but not the transparent amniotic membrane. We allowed renal progenitor cell-transplanted fetuses to develop for 6 days postoperatively before removal for analysis. We also transplanted renal progenitor cells into conditional kidney-deficient mouse embryos. We determined growth and differentiation of transplanted cells in all cases. RESULTS: Renal progenitor cell transplantation into the retroperitoneal cavity of fetuses at E13-E14 produced transplant-derived, vascularized glomeruli with filtration function and did not affect fetal growth or survival. Cells transplanted to the nephrogenic zone produced a chimera in the cap mesenchyme of donor and host nephron progenitor cells. Renal progenitor cells transplanted to conditional kidney-deficient fetuses induced the formation of a new nephron in the fetus that is connected to the host ureteric bud. CONCLUSIONS: We developed a cell transplantation method for midstage to late-stage fetuses. In vivo kidney regeneration from renal progenitor cells using the renal developmental environment of the fetus shows promise. Our findings suggest that fetal transplantation methods may contribute to organ regeneration and developmental research.


Assuntos
Células-Tronco Embrionárias/transplante , Rim/fisiologia , Regeneração/fisiologia , Animais , Transferência Embrionária , Feminino , Genes Reporter , Idade Gestacional , Rim/citologia , Rim/embriologia , Masculino , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Néfrons/embriologia , Espaço Retroperitoneal , Quimeras de Transplante
4.
Biochem Biophys Res Commun ; 520(3): 627-633, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31623827

RESUMO

Kidney regenerative medicine is expected to be the solution to the shortage of organs for transplantation. In a previous report, we transplanted exogenous renal progenitor cells (RPCs) including nephron progenitor cells (NPCs), stromal progenitor cells (SPCs), and the ureteric bud (UB) into the nephrogenic zone of animal embryos and succeeded in regenerating new nephrons from exogenous NPCs through a fetal developmental program. However, it was unknown whether the renal stromal lineage cells were regenerated from SPCs. The present study aimed to verify the differentiation of SPCs into mesangial cells and renal stromal lineage cells. Here, we found that simply transplanting RPCs, including SPCs, into the nephrogenic zone of wild-type fetal mice was insufficient for differentiation of SPCs. Therefore, to enrich the purity of SPCs, we sorted cells from RPCs by targeting platelet-derived growth factor receptor alpha (PDGFRa) which is a cell surface marker for immature stromal cells and transplanted the PDGFRa-positive sorted cells. As a result, we succeeded in regenerating a large number of mesangial cells and other renal stromal lineage cells including interstitial fibroblasts, vascular pericytes, and juxtaglomerular cells. We have established the method for regeneration of stromal cells from exogenous SPCs that may contribute to various fields, such as regenerative medicine and kidney embryology, and the creation of disease models for renal stromal disorders.


Assuntos
Rim/embriologia , Células Mesangiais/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Rim/citologia , Rim/fisiologia , Masculino , Células Mesangiais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Gravidez , Medicina Regenerativa , Transplante de Células-Tronco , Células Estromais/citologia , Células Estromais/fisiologia , Células Estromais/transplante
5.
J Clin Med ; 12(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983293

RESUMO

Kidney xenotransplantation has been attracting attention as a treatment option for end-stage renal disease. Fetal porcine kidneys are particularly promising grafts because they can reduce rejection through vascularization from host vessels. We are proposing xenogeneic regenerative medicine using fetal porcine kidneys injected with human nephron progenitor cells. For clinical application, it is desirable to establish reliable methods for the preservation and quality assessment of grafts. We evaluated the differentiation potency of vitrified porcine fetal kidneys compared with nonfrozen kidneys, using an in vivo differentiation model. Fetal porcine kidneys connected to the bladder were frozen via vitrification and stored in liquid nitrogen. Several days later, they were thawed and transplanted under the retroperitoneum of immunocompromised mice. After 14 days, the frozen kidneys grew and differentiated into mature nephrons, and the findings were comparable to those of nonfrozen kidneys. In conclusion, we demonstrated that the differentiation potency of vitrified fetal porcine kidneys could be evaluated using this model, thereby providing a practical protocol to assess the quality of individual lots.

6.
Regen Ther ; 24: 561-567, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37868722

RESUMO

Introduction: Ureteral injuries require surgical intervention as they lead to loss of renal function. The current reconstructive techniques for long ureteral defects are problematic. Consequently, this study aimed to reconstruct the ureter in a rat model using subcutaneously prepared autologous collagen tubes (Biotubes). Methods: The lower ureter of LEW/SsNSlc rats was ligated to dilate the ureter to make anastomosis easier, and reconstruction was performed six days later by anastomosing the dilated ureter and bladder with a Biotube that was prepared subcutaneously in syngeneic rats. Some rats underwent left nephrectomy and ureter reconstruction simultaneously as negative controls to evaluate the effects of urine flow on patency. The other rats were divided into three groups as follows: a group in which the ureter was reconstructed with the Biotube alone, a group in which cardiomyocyte sheets made from the neonatal hearts of syngeneic rats were wrapped around the Biotube, and a group in which an adipose-derived stem cell sheets made from the inguinal fat of adult syngeneic rats were wrapped. Contrast-enhanced computed tomography and pathological evaluations were performed two weeks after reconstruction. Result: In the Biotube alone group, all tubes were occluded and hydronephrosis developed, whereas the urothelium regenerated beyond the anastomosis when the left kidney was not removed, suggesting that urothelial epithelial spread occurred with urinary flow. The patency of the ureteral lumen was obtained in some rats in the cardiomyocyte sheet covered group, whereas stricture or obstruction of the reconstructed ureter was observed in all rats in the other groups. Pathological evaluation revealed a layered urothelial structure in the cardiomyocyte sheet covered group, although only a small amount of cardiomyocyte sheets remained. Conclusion: Urinary flow may support the epithelial spread of the urothelium into the reconstructed ureter. Neonatal rat cardiomyocyte sheets supported the patency of the regenerated ureter with a layered urothelium.

7.
Commun Biol ; 6(1): 1097, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898693

RESUMO

Kidney organoids have shown promise as evaluation tools, but their in vitro maturity remains limited. Transplantation into adult mice has aided in maturation; however, their lack of urinary tract connection limits long-term viability. Thus, long-term viable generated nephrons have not been demonstrated. In this study, we present an approachable method in which mouse and rat renal progenitor cells are injected into the developing kidneys of neonatal mice, resulting in the generation of chimeric nephrons integrated with the host urinary tracts. These chimeric nephrons exhibit similar maturation to the host nephrons, long-term viability with excretion and reabsorption functions, and cisplatin-induced renal injury in both acute and chronic phases, as confirmed by single-cell RNA-sequencing. Additionally, induced human nephron progenitor cells differentiate into nephrons within the neonatal kidneys. Collectively, neonatal injection represents a promising approach for in vivo nephron generation, with potential applications in kidney regeneration, drug screening, and pathological analysis.


Assuntos
Cisplatino , Rim , Camundongos , Ratos , Animais , Humanos , Cisplatino/toxicidade , Regeneração , Néfrons , Células-Tronco
8.
Front Immunol ; 13: 848433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242145

RESUMO

BACKGROUND: Animal fetal kidneys have the potential to be used as scaffolds for organ regeneration. We generated interspecies chimeric renal organoids by adding heterologous rat renal progenitor cells to single cells from mouse fetal kidneys and applying the renal development mechanism of mouse fetuses to rat renal progenitor cells to examine whether rat renal progenitor cells can differentiate into renal tissues of the three progenitor cell lineages of kidneys between different species. Furthermore, we investigated whether chimeric renal organoids with an increased proportion of recipient cells reduce xenogeneic rejection. METHODS: C57BL/6JJmsSlc mice (B6 mice) and Sprague-Dawley-Tg (CAG-EGFP) rat (GFP rats) fetuses were used as donors, and mature male NOD/Shi-scid, IL-2RγKO Jic mice (NOG mice) and Sprague-Dawley rats (SD rats) were used as recipients. First, fetal kidneys were removed from E13.5 B6 mice or E15.5 GFP rats and enzymatically dissociated into single cells. These cells were then mixed in equal proportions to produce chimeric renal organoids in vitro. The chimeric organoids were transplanted under the renal capsule of NOG mice, and maturation of the renal tissues in the organoids was observed histologically. Furthermore, chimeric organoids were prepared by changing the ratio of cells derived from mouse and rat fetal kidneys and transplanted under the renal capsule of SD rats subjected to mild immunosuppression to pathologically analyze the strength of the xenogeneic immune response. RESULTS: The cap mesenchyme was reconstructed in vitro, and nephron progenitor cells and ureteric buds were mosaically comprised GFP-negative mouse and GFP-positive rat cells. In the in vivo environment of immunodeficient mice, chimeric renal organoids mosaically differentiated and matured into renal tissues of three lineages. Chimeric renal organoids with high rates of recipient rat cells showed milder rejection than complete xenograft organoids. The vessels of recipient rats entered from the periphery of the transplanted chimeric renal organoids, which might reduce their immunogenicity. CONCLUSION: Interspecies chimeric renal organoids may differentiate into mature renal tissues of each renal progenitor cell lineage. Furthermore, they may reduce transplant rejection compared with xenograft organoids.


Assuntos
Rim , Organoides , Animais , Quimera , Humanos , Imunidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Sprague-Dawley
9.
Cell Rep ; 39(11): 110933, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705028

RESUMO

Generation of new kidneys can be useful in various research fields, including organ transplantation. However, generating renal stroma, an important component tissue for structural support, endocrine function, and kidney development, remains difficult. Organ generation using an animal developmental niche can provide an appropriate in vivo environment for renal stroma differentiation. Here, we generate rat renal stroma with endocrine capacity by removing mouse stromal progenitor cells (SPCs) from the host developmental niche and transplanting rat SPCs. Furthermore, we develop a method to replace both nephron progenitor cells (NPCs) and SPCs, called the interspecies dual replacement of the progenitor (i-DROP) system, and successfully generate functional chimeric kidneys containing rat nephrons and stroma. This method can generate renal tissue from progenitors and reduce xenotransplant rejection. Moreover, it is a safe method, as donor cells do not stray into nontarget organs, thus accelerating research on stem cells, chimeras, and xenotransplantation.


Assuntos
Rim , Néfrons , Nicho de Células-Tronco , Células-Tronco , Animais , Diferenciação Celular , Quimera , Rim/citologia , Camundongos , Néfrons/citologia , Ratos , Células-Tronco/citologia
10.
J Clin Med ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36498811

RESUMO

To align the xeno-metanephros and renal progenitor cell timing for transplantation treatments, cryopreservation techniques and an efficient transportation of regenerated renal products such as xeno-metanephroi and renal progenitor cells should be established. Therefore, we propose a novel method of xenogeneic regenerative medicine for patients with chronic kidney disease by grafting porcine fetal kidneys injected with human renal progenitor cells. To develop a useful cryopreserve system of porcine fetal kidney and human renal progenitor cells, we examined the cryopreservation of a fetal kidney implanted with renal progenitor cells in a mouse model. First, we developed a new method for direct cell injection under the capsule of the metanephros using gelatin as a support for unzipped fetal kidneys. Then, we confirmed in vitro that the nephrons derived from the transplanted cells were regenerated even after cryopreservation before and after cell transplantation. Furthermore, the cryopreserved chimeric metanephroi grew, and regenerated nephrons were observed in NOD. We confirmed that even in cryopreserved chimeric metanephroi, transplanted cell-derived nephrons as well as fresh transplants grew.

11.
STAR Protoc ; 2(1): 100314, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554147

RESUMO

Renal progenitor cells induced from pluripotent stem cells have attracted attention as a cell source for organ regeneration. Here, we report an in vivo protocol for the regeneration of urine-producing nephrons, i.e., neo-nephrons, in mice. We outline steps to transplant exogenous renal progenitor cells into the nephrogenic zone of transgenic mice and subsequently analyze these neo-nephrons. For complete details on the use and execution of this protocol, please refer to Fujimoto et al. (2020).


Assuntos
Separação Celular/métodos , Néfrons/crescimento & desenvolvimento , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/fisiologia , Humanos , Rim/citologia , Camundongos , Camundongos Transgênicos , Organogênese/fisiologia , Células-Tronco Pluripotentes/fisiologia , Ratos , Regeneração/fisiologia , Células-Tronco/metabolismo
12.
Acta Cir Bras ; 36(5): e360503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34161432

RESUMO

PURPOSE: As a classical xenotransplantation model, porcine kidneys have been transplanted into the lower abdomen of non-human primates. However, we have improved upon this model by using size-matched grafting in the orthotopic position. The beneficial aspects and surgical details of our method are reported herein. METHODS: Donors were two newborn pigs (weighting 5 to 6 kg) and recipients were two cynomolgus monkeys (weighting, approximately, 7 kg). After bilateral nephrectomy, kidneys were cold-transported in Euro-Collins solution. The porcine kidney was transplanted to the site of a left nephrectomy and fixed to the peritoneum. RESULTS: Kidneys transplanted to the lower abdomen by the conventional method were more susceptible to torsion of the renal vein (two cases). In contrast, early-stage blood flow insufficiency did not occur in orthotopic transplants of theleft kidney. CONCLUSIONS: Size-matched porcine-primate renal grafting using our method of transplanting tothe natural position of the kidneys contributes to stable post-transplant blood flow to the kidney.


Assuntos
Transplante de Rim , Transplantes , Animais , Sobrevivência de Enxerto , Rim/cirurgia , Macaca fascicularis , Nefrectomia , Suínos
13.
Cell Rep ; 32(11): 108130, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937125

RESUMO

Animal fetuses may be used for the regeneration of human organs. We have previously generated a transgenic mouse model that allows diphtheria toxin (DT)-induced ablation of Six2-positive nephron progenitor cells (NPCs). Elimination of existing native host NPCs enables their replacement with donor NPCs, which can generate neo-nephrons. However, this system cannot be applied to human NPCs, because DT induces apoptosis in human cells. Therefore, the present study presents a transgenic mouse model for the ablation of NPCs using tamoxifen, which does not affect human cells. Using this system, we successfully regenerate interspecies neo-nephrons, which exhibit urine-producing abilities, from transplanted rat NPCs in a mouse host. Transplantation of human induced pluripotent stem cell (iPSC)-derived NPCs results in differentiation into renal vesicles, which connect to the ureteric bud of the host. Thus, we demonstrate the possibility of the regeneration of human kidneys derived from human iPSC-derived NPCs via NPC replacement.


Assuntos
Néfrons/citologia , Regeneração , Células-Tronco/citologia , Animais , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Néfrons/efeitos dos fármacos , Néfrons/ultraestrutura , Especificidade de Órgãos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Especificidade da Espécie , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tamoxifeno/farmacologia , Fatores de Transcrição/metabolismo , Bexiga Urinária/embriologia , Micção/efeitos dos fármacos
14.
Sci Rep ; 9(1): 6965, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061458

RESUMO

Kidney regeneration is expected to be a new alternative treatment to the currently limited treatments for chronic kidney disease. By transplanting exogeneous nephron progenitor cells (NPCs) into the metanephric mesenchyme of a xenogeneic foetus, we aimed to regenerate neo-kidneys that originate from transplanted NPCs. Previously, we generated a transgenic mouse model enabling drug-induced ablation of NPCs (the Six2-iDTR mouse). We demonstrated that eliminating existing native host NPCs allowed their 100% replacement with donor mouse or rat NPCs, which could generate neo-nephrons on a culture dish. To apply this method to humans in the future, we examined the possibility of the in vivo regeneration of nephrons between different species via NPC replacement. We injected NPCs-containing rat renal progenitor cells and diphtheria toxin below the renal capsule of E13.5 metanephroi (MNs) of Six2-iDTR mice; the injected MNs were then transplanted into recipient rats treated with immunosuppressants. Consequently, we successfully regenerated rat/mouse chimeric kidneys in recipient rats receiving the optimal immunosuppressive therapy. We revealed a functional connection between the neo-glomeruli and host vessels and proper neo-glomeruli filtration. In conclusion, we successfully regenerated interspecies kidneys in vivo that acquired a vascular system. This novel strategy may represent an effective method for human kidney regeneration.


Assuntos
Rim/citologia , Mesoderma/citologia , Néfrons/citologia , Organogênese , Regeneração , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Diferenciação Celular , Feminino , Rim/fisiologia , Masculino , Mesoderma/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Néfrons/fisiologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/fisiologia , Quimeras de Transplante
16.
Acta cir. bras ; 36(5): e360503, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278103

RESUMO

ABSTRACT Purpose As a classical xenotransplantation model, porcine kidneys have been transplanted into the lower abdomen of non-human primates. However, we have improved upon this model by using size-matched grafting in the orthotopic position. The beneficial aspects and surgical details of our method are reported herein. Methods Donors were two newborn pigs (weighting 5 to 6 kg) and recipients were two cynomolgus monkeys (weighting, approximately, 7 kg). After bilateral nephrectomy, kidneys were cold-transported in Euro-Collins solution. The porcine kidney was transplanted to the site of a left nephrectomy and fixed to the peritoneum. Results Kidneys transplanted to the lower abdomen by the conventional method were more susceptible to torsion of the renal vein (two cases). In contrast, early-stage blood flow insufficiency did not occur in orthotopic transplants of theleft kidney. Conclusions Size-matched porcine-primate renal grafting using our method of transplanting tothe natural position of the kidneys contributes to stable post-transplant blood flow to the kidney.


Assuntos
Animais , Transplante de Rim , Transplantes , Suínos , Sobrevivência de Enxerto , Rim/cirurgia , Macaca fascicularis , Nefrectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA