Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(29): e202400504, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38499467

RESUMO

To fully harness the potential of molecular machines, it is crucial to develop methods by which to exert control over their speed of motion through the application of external stimuli. A conformationally strained macrocyclic fluorescent rotamer, CarROT, displays a reproducible and linear fluorescence decrease towards temperature over the physiological temperature range. Through the external addition of anions, cations or through deprotonation, the compound can access four discreet rotational speeds via supramolecular interactions (very slow, slow, fast and very fast) which in turn stop, reduce or enhance the thermoluminescent properties due to increasing or decreasing non-radiative decay processes, thereby providing a means to externally control the temperature sensitivity of the system. Through comparison with analogues with a higher degree of conformational freedom, the high thermosensitivity of CarROT over the physiological temperature range was determined to be due to conformational strain, which causes a high energy barrier to rotation over this range. Analogues with a higher degree of conformational freedom display lower sensitivities towards temperature over the same temperature range. This study provides an example of an information rich small molecule, in which programable rotational speed states can be observed with facile read-out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA