Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lab Invest ; 93(4): 408-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358112

RESUMO

Thyroid transcription factor 1 (TTF1) plays crucial roles in thyroid, lung, and developing brain morphogenesis. Because TTF1-expressing neoplasms are generated from organs and tissues that normally express TTF1, such as the thyroid follicular epithelium and peripheral lung airway epithelium, TTF1 is widely used as a cell lineage-specific and diagnostic marker for thyroid carcinomas and for lung adenocarcinomas with terminal respiratory unit (TRU) differentiation. However, among lung neuroendocrine tumors, small-cell carcinomas (small-cell lung cancers (SCLCs)), most of which are generated from the central airway, also frequently express TTF1 at high levels. To clarify how SCLCs express TTF1, we investigated the molecular mechanisms of its expression using cultivated lung cancer cells and focusing upon neural cell-specific transcription factors. Both SCLC cells and lung adenocarcinoma cells predominantly expressed isoform 2 of TTF1, and TTF1 promoter assays in SCLC cells revealed that the crucial region for activation of the promoter, which is adjacent to the transcription start site of TTF1 isoform 2, has potent FOX-, LHX-, and BRN2-binding sites. Transfection experiments using expression vectors for FOXA1, FOXA2, LHX2, LHX6, and BRN2 showed that BRN2 substantially upregulated TTF1 expression, whereas FOXA1/2 weakly upregulated TTF1 expression. BRN2 and FOXA1/2 binding to the TTF1 promoter was confirmed through chromatin immunoprecipitation experiments, and TTF1 expression in SCLC cells was considerably downregulated after BRN2 knockdown. Furthermore, the TTF1 promoter in SCLC cells was scarcely methylated, and immunohistochemical examinations using a series of primary lung tumors indicated that TTF1 and BRN2 were coexpressed only in SCLC cells. These findings suggest that TTF1 expression in SCLC is a cell lineage-specific phenomenon that involves the developing neural cell-specific homeoprotein BRN2.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores do Domínio POU/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Regiões Promotoras Genéticas , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição , Ativação Transcricional
2.
Pathol Int ; 63(3): 158-68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23530560

RESUMO

BRN2 is a developmental neural cell-specific POU domain transcription factor and is crucial for cell lineage determination. We investigated the importance of BRN2 in the expression of the lineage-specific transcription factors (achaete-scute homolog-like 1 (ASCL1) and NeuroD1 (ND1)) and neural/neuroendocrine marker molecules (neural cell adhesion molecule 1 (NCAM1), synaptophysin (SYP) and chromogranin A (CHGA)) in small cell lung cancer (SCLC) using cultured lung cancer cells. All examined SCLC cell lines expressed BRN2, as well as ASCL1, ND1, NCAM1, SYP and CHGA. The expression levels of ASCL1, ND1, NCAM1, SYP and CHGA considerably decreased when BRN2 was knocked down in SCLC cells, and the addition of a BRN2 transgene into non-SCLC (NSCLC) cells induced the expression of ASCL1, ND1, NCAM1, SYP and CHGA. However, the BRN2 gene was not activated by the forced expression of ASCL1 or ND1 in NSCLC cells. The knockdown of BRN2 caused significant growth retardation with decrease of S to G2 phase population and mitotic cell rates and unaltered Ki-67-labeled or apoptotic cell rates in SCLC cells, indicating increase of G1 phase population. These findings suggest that BRN2 is a higher level regulator than ASCL1 and ND1 and BRN2 might be involved in aggressiveness of SCLC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/metabolismo , NADH Desidrogenase/metabolismo , Fatores do Domínio POU/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NADH Desidrogenase/genética , Sistemas Neurossecretores/metabolismo , Fatores do Domínio POU/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
3.
Pathol Int ; 62(4): 232-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22449227

RESUMO

Neural cell adhesion molecule 1 (NCAM1), synaptophysin (SYPT), and chromogranin A (CGA) are immunohistochemical markers for diagnosing lung neuroendocrine tumors (LNETs). However, the precise expression mechanisms have not been studied in enough detail. The purpose of the present study is to define the molecular mechanisms of NCAM1, SYPT, and CGA gene expressions, using cultivated lung cancer cells and focusing upon NeuroD1 (ND1), achaete-scute homolog-like 1 (ASCL1), and known transcription factors, repressor element 1 (RE1)-silencing transcription factor (REST) and c-AMP responsive element-binding protein (CREB). Promoter assays, chromatin immunoprecipitation, and transfection experiments revealed that ND1 activated NCAM1, that ASCL1 weakly upregulated SYPT expression, and that CGA expression was not regulated by ND1 or ASCL1. REST expression was restricted in non-small cell lung cancer (NSCLC) cells, and knockdown of REST could cause as much SYPT expression as in SCLC cells and weak CGA expression in NSCLC cells. However, CGA gene upregulation via CREB activation was not found in REST-lacking NSCLC cells, indicating the requirement of some additional mechanism for sufficient expression. These results suggest that NCAM1, SYPT and CGA expressions are differently regulated by neuroendocrine phenotype-specific transcription factors and provide a reason why NCAM1 and SYPT are frequently expressed in LNETs, irrespective of malignancy grade.


Assuntos
Antígeno CD56/genética , Carcinoma Neuroendócrino/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Cromogranina A/genética , Neoplasias Pulmonares/genética , Proteínas de Transporte Vesicular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antígeno CD56/metabolismo , Carcinoma Neuroendócrino/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sinaptofisina , Transfecção
4.
Am J Pathol ; 177(1): 70-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20489156

RESUMO

Vascular endothelial growth factor-A (VEGF-A) is crucial for angiogenesis, vascular permeability, and metastasis during tumor development. We demonstrate here that early growth response-1 (EGR-1), which is induced by the extracellular signal-regulated kinase (ERK) pathway activation, activates VEGF-A in lung cancer cells. Increased EGR-1 expression was found in adenocarcinoma cells carrying mutant K-RAS or EGFR genes. Hypoxic culture, siRNA experiment, luciferase assays, chromatin immunoprecipitation, electrophoretic mobility shift assays, and quantitative RT-PCR using EGR-1-inducible lung cancer cells demonstrated that EGR-1 binds to the proximal region of the VEGF-A promoter, activates VEGF-A expression, and enhances hypoxia inducible factor 1alpha (HIF-1alpha)-mediated VEGF-A expression. The EGR-1 modulator, NAB-2, was rapidly induced by increased levels of EGR-1. Pathology samples of human lung adenocarcinomas revealed correlations between EGR-1/HIF-1alpha and VEGF-A expressions and relative elevation of EGR-1 and VEGF-A expression in mutant K-RAS- or EGFR-carrying adenocarcinomas. Both EGR-1 and VEGF-A expression increased as tumors dedifferentiated, whereas HIF-1alpha expression did not. Although weak correlation was found between EGR-1 and NAB-2 expressions on the whole, NAB-2 expression decreased as tumors dedifferentiated, and inhibition of DNA methyltransferase/histone deacetylase increased NAB-2 expression in lung cancer cells despite no epigenetic alteration in the NAB-2 promoter. These findings suggest that EGR-1 plays important roles on VEGF-A expression in lung cancer cells, and epigenetic silencing of transactivator(s) associated with NAB-2 expression might also contribute to upregulate VEGF-A expression.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Neoplasias Pulmonares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Decitabina , Proteína 1 de Resposta de Crescimento Precoce/genética , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes ras , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Regiões Promotoras Genéticas , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
5.
Pathol Int ; 61(1): 19-27, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21166939

RESUMO

Gene silencing by promoter hypermethylation plays an important role in molecular pathogenesis. We previously reported that insulin-like growth factor (IGF) binding protein-4 (IGFBP-4), which inhibits IGF-dependent growth, is expressed via early growth response-1 (EGR-1) and is often silenced in cultivated lung cancer cells. The purpose of the present study was to clarify clinicopathological factors associated with IGFBP-4 gene silencing in lung adenocarcinomas. Seventy-six surgically resected adenocarcinomas (20 well-, 35 moderately-, and 21 poorly-differentiated) were subjected to methylation-specific polymerase chain reaction (PCR) analysis for EGR-1-binding sites located in the IGFBP-4 promoter and immunohistochemistry for IGFBP-4, EGR-1, and Ki-67. Thirty-two adenocarcinomas (42%) revealed IGFBP-4 promoter hypermethylation, and the severity inversely correlated with the level of IGFBP-4 expression (P < 0.0001) and tumor differentiation (well versus poor, P = 0.0278; well/moderate versus poor, P = 0.0395). Furthermore, there was a negative correlation between Ki-67 labeling index and IGFBP-4 expression (P = 0.0361). These findings suggest that the expression of IGFBP-4 in adenocarcinoma cells in vivo is downregulated by epigenetic silencing in association with tumor differentiation, resulting in disruption of the mechanism of IGFBP-4-mediated growth inhibition.


Assuntos
Adenocarcinoma/genética , Inativação Gênica , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Sítios de Ligação , Metilação de DNA , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , Imuno-Histoquímica , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
6.
Am J Pathol ; 175(2): 867-81, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19608870

RESUMO

Our preliminary studies revealed that oncogenic KRAS (KRAS/V12) dramatically suppressed the growth of immortalized airway epithelial cells (NHBE-T, with viral antigen-inactivated p53 and RB proteins). This process appeared to be a novel event, different from the so-called premature senescence that is induced by either p53 or RB, suggesting the existence of a novel tumor suppressor that functions downstream of oncogenic KRAS. After a comprehensive search for genes whose expression levels were modulated by KRAS/V12, we focused on DUSP6, a pivotal negative feedback regulator of the RAS-ERK pathway. A dominant-negative DUSP6 mutant, however, failed to rescue KRAS/V12-induced growth suppression, but conferred a stronger anchorage-independent growth activity to the surviving subpopulation of cells generated from KRAS/V12-transduced NHBE-T. DUSP6 expression levels were found to be weaker in most lung cancer cell lines than in NHBE-T, and DUSP6 restoration suppressed cellular growth. In primary lung cancers, DUSP6 expression levels decreased as both growth activity and histological grade of the tumor increased. Loss of heterozygosity of the DUSP6 locus was found in 17.7% of cases and was associated with reduced expression levels. These results suggest that DUSP6 is a growth suppressor whose inactivation could promote the progression of lung cancer. We have here identified an important factor involved in carcinogenesis through a comprehensive search for downstream targets of oncogenic KRAS.


Assuntos
Transformação Celular Neoplásica/genética , Fosfatase 6 de Especificidade Dupla/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Desequilíbrio Alélico , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Ilhas de CpG , Metilação de DNA , Regulação para Baixo , Humanos , Neoplasias Pulmonares/patologia , Mutação , Regiões Promotoras Genéticas , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras) , Ativação Transcricional
7.
Am J Pathol ; 175(6): 2646-56, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19893046

RESUMO

FXYD3 is a FXYD-containing Na,K-ATPase ion channel regulator first identified as a protein overexpressed in murine breast tumors initiated by oncogenic ras or neu. However, our preliminary study revealed that FXYD3 expression was down-regulated in oncogenic KRAS-transduced airway epithelial cells. This contradiction led us to investigate the role of FXYD3 in carcinogenesis of the lung. FXYD3 mRNA and protein levels were lower in most of the lung cancer cell lines than in either the noncancerous lung tissue or airway epithelial cells. Protein levels were also lower in a considerable proportion of primary lung cancers than in nontumoral airway epithelia; FXYD3 expression levels decreased in parallel with the dedifferentiation process. Also, a somatic point mutation, g55c (D19H), was found in one cell line. Forced expression of the wild-type FXYD3, but not the mutant, restored the well-demarcated distribution of cortical actin in cancer cells that had lost FXYD3 expression, suggesting FXYD3 plays a role in the maintenance of cytoskeletal integrity. However, no association between FXYD3 expression and its promoter's methylation status was observed. Therefore, inactivation of FXYD3 through a gene mutation or unknown mechanism could be one cause of the atypical shapes of cancer cells and play a potential role in the progression of lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Metilação de DNA/genética , Análise Mutacional de DNA , Regulação para Baixo , Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Am J Pathol ; 175(3): 976-87, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19679880

RESUMO

Small cell lung cancer (SCLC) exhibits insulin-like growth factor-dependent growth. SCLC is the most aggressive among known in vivo lung cancers, whereas in vitro growth of SCLC is paradoxically slow as compared with that of non-SCLC (NSCLC). In this study, we demonstrate that SCLC cells overexpress insulin-like growth factor binding protein (IGFBP)-2 via NeuroD, a neuroendocrine cell-specific transcription factor. Chromatin immunoprecipitation, electrophoretic mobility shift, and IGFBP-2 promoter assays all revealed that NeuroD binds to the E-box in the 5'-untranslated region of IGFBP-2. A NeuroD transgene in both airway epithelial and NSCLC cells up-regulated the transcription of IGFBP-2 and retarded cell growth. Recombinant IGFBP-2 repressed the growth of both airway epithelial and NSCLC cells in a dose-dependent manner. A NeuroD-specific small interfering RNA repressed IGFBP-2 expression in SCLC, and neutralization of IGFBP-2 and an IGFBP-2-specific small interfering RNA increased SCLC cell growth. Pathological samples of SCLC also expressed IGFBP-2 abundantly, as compared with NSCLC, and showed only rare (8%) IGFBP-2 promoter methylation, whereas the IGFBP-2 promoter was methylated in 71% of adenocarcinomas and 29% of squamous cell carcinomas. These findings suggest that 1) SCLC has an IGFBP-2 overexpression mechanism distinct from NSCLC, 2) secreted IGFBP-2 contributes to the slow growth of SCLC in vitro, and 3) the epigenetic alterations in the IGFBP-2 promoter contribute to the striking differences in IGFBP-2 expression between SCLC and NSCLC in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Metilação de DNA , DNA de Neoplasias/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/patologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Carcinoma de Pequenas Células do Pulmão/patologia , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA