Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Haematol ; 196(3): 711-723, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927242

RESUMO

Historically, defining haematopoietic subsets, including self-renewal, differentiation and lineage restriction, has been elucidated by transplanting a small number of candidate cells with many supporting bone marrow (BM) cells. While this approach has been invaluable in characterising numerous distinct subsets in haematopoiesis, this approach is arguably flawed. The haematopoietic stem cell (HSC) has been proposed as the critical haematopoietic subset necessary for transplantation. However, due to the presence of supporting cells, the HSC has never demonstrated sufficiency. Utilising the homeobox B5 (Hoxb5)-reporter system, we found that neither long-term (LT) HSCs nor short-term (ST) HSCs alone were sufficient for long-term haematopoietic reconstitution. Critically, reconstitution can be rescued by transplanting combined LT- and ST-HSCs, without supporting cells; a fraction we term the 'Minimum Subset for Transplantation' (MST). The MST accounts for only 0·005% of nucleated cells within mouse BM, and this MST can be cultured, expanded and genetically modified while preserving its rapid haematopoietic engraftment potential. These results support the consideration of an MST approach for clinical translation, especially for gene therapy approaches that require HSC compartment modification.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Avaliação de Resultados em Cuidados de Saúde/normas , Indicadores de Qualidade em Assistência à Saúde , Animais , Biomarcadores , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Expressão Gênica , Genes Reporter , Sobrevivência de Enxerto , Hematopoese , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/normas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Modelos Animais , Fenótipo , Condicionamento Pré-Transplante
2.
Biochem Biophys Res Commun ; 539: 34-41, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33418191

RESUMO

Self-renewal and multipotency are essential functions of hematopoietic stem cells (HSCs). To maintain homeostatic hematopoiesis, functionally uniform HSCs have been thought to be an ideal cell-of-origin. Recent technological advances in the field have allowed us to analyze HSCs with single cell resolution and implicate that functional heterogeneity may exist even within the highly purified HSC compartment. However, due in part to the technical limitations of analyzing extremely rare populations and our incomplete understanding of HSC biology, neither the biological meaning of why heterogeneity exists nor the precise mechanism of how heterogeneity is determined within the HSC compartment is entirely known. Here we show the first evidence that self-renewal capacity varies with the degree of replication stress dose and results in heterogeneity within the HSC compartment. Using the Hoxb5-reporter mouse line which enables us to distinguish between long-term (LT)-HSCs and short-term (ST)-HSCs, we have found that ST-HSCs quickly lose self-renewal capacity under high stress environments but can maintain self-renewal under low stress environments for long periods of time. Critically, exogeneous Hoxb5 expression confers protection against loss of self-renewal to Hoxb5-negative HSCs and can partially alter the cell fate of ST-HSCs to that of LT-HSCs. Our results demonstrate that Hoxb5 imparts functional heterogeneity in the HSC compartment by regulating self-renewal capacity. Additionally, Hoxb5-positive HSCs may exist as fail-safe system to protect from the exhaustion of HSCs throughout an organism's lifespan.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células/fisiologia , Autorrenovação Celular/fisiologia , Hematopoese , Proteínas de Homeodomínio/genética , Camundongos
3.
Rinsho Ketsueki ; 60(9): 1056-1062, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31597827

RESUMO

The hematopoietic stem cells, defined as blood stem cells with self-replication ability and multipotency, are key to successful hematopoietic stem cell transplantation. With the history of transplantation in the past 60 years and advances in stem cell technologies, our understanding of the hematopoietic system has deepened. However, the molecular mechanisms of self-renewal and pluripotency, which are the essence of the hematopoietic stem cells, remain poorly understood. One reason is that the identification/purification methods of the hematopoietic stem cells, particularly the long-term hematopoietic stem cells capable of lifelong self-renewal, is technically difficult owing to their scarcity in the bone marrow and has not been established to this date. Considering that a long-lasting blood production after hematopoietic stem cell transplantation is crucial, it is essential to understand the biology of the long-term hematopoietic stem cells not only scientifically but also clinically. This review describes the scientific and clinical significance of the long-term hematopoietic stem cells by showing the results of the latest researches in the introduction of hematopoietic stem cell identification/purification history.


Assuntos
Separação Celular , Células-Tronco Hematopoéticas/citologia , Medula Óssea , Células da Medula Óssea/citologia , Transplante de Células-Tronco Hematopoéticas , Humanos
4.
Tohoku J Exp Med ; 236(4): 289-95, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26250536

RESUMO

Multicentric Castleman's disease is a systemic inflammatory disorder characterized by lymphadenopathy and excessive interleukin-6 production. A unique clinicopathologic variant of multicentric Castleman's disease, TAFRO (i.e., thrombocytopenia, anasarca, fever, renal failure or reticulin fibrosis, and organomegaly) syndrome, was recently proposed in Japan. Despite the successful use of anti-interleukin-6 therapy in some patients with TAFRO syndrome, not all patients achieve remission. The pathophysiological etiology of and suitable therapeutic strategies for this variant have not been established. Here, we present our experience of a unique case of TAFRO syndrome in a 78-year-old woman whose symptoms responded differently to several therapies. Tocilizumab, an anti-interleukin-6 receptor antibody, successfully induced remission of fever and lymphadenopathy. However, severe thrombocytopenia persisted and she developed anasarca, ascites, and pleural effusion shortly thereafter. Rituximab, an anti-CD20 antibody, and glucocorticoid therapy provided no symptom relief. In contrast, cyclosporine A, an immunosuppressive agent that blocks T cell function by inhibiting interleukin-2, yielded immediate improvements in systemic fluid retention and a gradual increase in platelet count, with complete resolution of disease symptoms. Excessive serum interleukin-2, when used as an anti-cancer agent, has been reported to cause side effects such as fluid retention, thrombocytopenia, and renal failure. Our case was unique because the anti-interleukin-2 therapy successfully improved symptoms that were not relieved with anti-interleukin-6 therapy. The present report therefore provides insight into the possible role of interleukin-2, in addition to interleukin-6, in TAFRO syndrome. This report will certainly help to clarify the pathogenesis of and optimal treatment strategies for TAFRO syndrome.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Hiperplasia do Linfonodo Gigante/tratamento farmacológico , Hiperplasia do Linfonodo Gigante/patologia , Ciclosporina/uso terapêutico , Rituximab/uso terapêutico , Idoso , Anticorpos Monoclonais Humanizados/farmacologia , Ciclosporina/farmacologia , Edema/patologia , Feminino , Febre/tratamento farmacológico , Febre/patologia , Humanos , Interleucina-2/antagonistas & inibidores , Contagem de Plaquetas , Insuficiência Renal/patologia , Rituximab/farmacologia , Síndrome , Trombocitopenia/patologia , Resultado do Tratamento
5.
J Vis Exp ; (195)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37318237

RESUMO

Self-renewal capacity and multi-lineage differentiation potential are generally regarded as the defining characteristics of hematopoietic stem cells (HSCs). However, numerous studies have suggested that functional heterogeneity exists in the HSC compartment. Recent single-cell analyses have reported HSC clones with different cell fates within the HSC compartment, which are referred to as biased HSC clones. The mechanisms underlying heterogeneous or poorly reproducible results are little understood, especially regarding the length of self-renewal when purified HSC fractions are transplanted by conventional immunostaining. Therefore, establishing a reproducible isolation method for long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs), defined by the length of their self-renewal, is crucial for overcoming this issue. Using unbiased multi-step screening, we identified a transcription factor, Hoxb5, which may be an exclusive marker of LT-HSCs in the mouse hematopoietic system. Based on this finding, we established a Hoxb5 reporter mouse line and successfully isolated LT-HSCs and ST-HSCs. Here we describe a detailed protocol for the isolation of LT-HSCs and ST-HSCs using the Hoxb5 reporter system. This isolation method will help researchers better understand the mechanisms of self-renewal and the biological basis for such heterogeneity in the HSC compartment.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas , Camundongos , Animais , Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA