RESUMO
Viruses that are typically benign sometimes invade the brainstem in otherwise healthy children. We report bi-allelic DBR1 mutations in unrelated patients from different ethnicities, each of whom had brainstem infection due to herpes simplex virus 1 (HSV1), influenza virus, or norovirus. DBR1 encodes the only known RNA lariat debranching enzyme. We show that DBR1 expression is ubiquitous, but strongest in the spinal cord and brainstem. We also show that all DBR1 mutant alleles are severely hypomorphic, in terms of expression and function. The fibroblasts of DBR1-mutated patients contain higher RNA lariat levels than control cells, this difference becoming even more marked during HSV1 infection. Finally, we show that the patients' fibroblasts are highly susceptible to HSV1. RNA lariat accumulation and viral susceptibility are rescued by wild-type DBR1. Autosomal recessive, partial DBR1 deficiency underlies viral infection of the brainstem in humans through the disruption of tissue-specific and cell-intrinsic immunity to viruses.
Assuntos
Encefalopatias Metabólicas Congênitas/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/virologia , RNA/química , RNA/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Encefalopatias Metabólicas Congênitas/patologia , Tronco Encefálico/patologia , Encefalite Viral/genética , Escherichia coli/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Herpesvirus Humano 1 , Humanos , Interferons/metabolismo , Íntrons/genética , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Fases de Leitura Aberta/genética , Linhagem , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/deficiência , RNA Nucleotidiltransferases/genética , Receptor 3 Toll-Like/metabolismo , Replicação ViralRESUMO
Autosomal recessive (AR) STAT1 deficiency is a severe inborn error of immunity disrupting cellular responses to type I, II, and III IFNs, and IL-27, and conferring a predisposition to both viral and mycobacterial infections. We report the genetic, immunological, and clinical features of an international cohort of 32 patients from 20 kindreds: 24 patients with complete deficiency, and 8 patients with partial deficiency. Twenty-four patients suffered from mycobacterial disease (bacillus Calmette-Guérin = 13, environmental mycobacteria = 10, or both in 1 patient). Fifty-four severe viral episodes occurred in sixteen patients, mainly caused by Herpesviridae viruses. Attenuated live measles, mumps, and rubella and/or varicella zoster virus vaccines triggered severe reactions in the five patients with complete deficiency who were vaccinated. Seven patients developed features of hemophagocytic syndrome. Twenty-one patients died, and death was almost twice as likely in patients with complete STAT1 deficiency than in those with partial STAT1 deficiency. All but one of the eight survivors with AR complete deficiency underwent hematopoietic stem cell transplantation. Overall survival after hematopoietic stem cell transplantation was 64%. A diagnosis of AR STAT1 deficiency should be considered in children with mycobacterial and/or viral infectious diseases. It is important to distinguish between complete and partial forms of AR STAT1 deficiency, as their clinical outcome and management differ significantly.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfo-Histiocitose Hemofagocítica , Infecções por Mycobacterium , Mycobacterium bovis , Humanos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismoRESUMO
TET3 at 2p13.1 encodes tet methylcytosine dioxygenase 3, a demethylation enzyme that converts 5-methylcytosine to 5-hydroxymethylcytosine. Beck et al. reported that patients with TET3 abnormalities in either an autosomal dominant or recessive inheritance fashion clinically showed global developmental delay, intellectual disability, and dysmorphisms. In this study, exome sequencing identified both mono- and biallelic TET3 variants in two families: a de novo variant NM_001287491.1:c.3028 A > G:p.(Asn1010Asp), and compound heterozygous variants NM_001287491.1:c.[2077 C > T];[2896 T > G],p.[Gln693*];[Cys966Gly]. Despite the different inheritance modes, the affected individuals showed similar phenotypic features. Including these three patients, only 14 affected individuals have been reported to date. The accumulation of data regarding individuals with TET3-related disorder is necessary to describe their clinical spectrum.
Assuntos
Anormalidades Craniofaciais , Dioxigenases , Deficiência Intelectual , Dioxigenases/genética , Humanos , Deficiência Intelectual/genética , Sequenciamento do ExomaRESUMO
IRAK4 deficiency is an inborn error of immunity predisposing patients to invasive pyogenic infections. Currently, there is no established simple assay that enables precise characterization of IRAK4 mutant alleles in isolation. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune condition that is characterized by psychiatric symptoms, involuntary movement, seizures, autonomic dysfunction, and central hypoventilation. It typically occurs in adult females associated with tumors. Only a few infantile cases with anti-NMDAR encephalitis have been so far reported. We identified a 10-month-old boy with IRAK4 deficiency presenting with anti-NMDAR encephalitis and human herpes virus 6 (HHV6) reactivation. The diagnosis of IRAK4 deficiency was confirmed by the identification of compound heterozygous mutations c.29_30delAT (p.Y10Cfs*9) and c.35G>C (p.R12P) in the IRAK4 gene, low levels of IRAK4 protein expression in peripheral blood, and defective fibroblastic cell responses to TLR and IL-1 (TIR) agonist. We established a novel NF-κB reporter assay using IRAK4-null HEK293T, which enabled the precise evaluation of IRAK4 mutations. Using this system, we confirmed that both novel mutations identified in the patient are deleterious. Our study provides a new simple and reliable method to analyze IRAK4 mutant alleles. It also suggests the possible link between inborn errors of immunity and early onset anti-NMDAR encephalitis.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Herpesvirus Humano 6/fisiologia , Doenças da Imunodeficiência Primária/diagnóstico , Infecções por Roseolovirus/diagnóstico , Infecções por Roseolovirus/virologia , Ativação Viral , Alelos , Encefalite Antirreceptor de N-Metil-D-Aspartato/etiologia , Autoimunidade , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Análise Mutacional de DNA , Diagnóstico Diferencial , Gerenciamento Clínico , Suscetibilidade a Doenças , Genes Reporter , Predisposição Genética para Doença , Células HEK293 , Humanos , Lactente , Quinases Associadas a Receptores de Interleucina-1/imunologia , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Doenças da Imunodeficiência Primária/imunologia , Avaliação de SintomasRESUMO
Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial and viral infections. Only seven patients from five unrelated families with this disorder have been so far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and contributed to the identification of the intronic mutations. The patient's cells showed a lack of STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN-γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to include intronic mutations, in the comprehensive genomic study when the patient lacks molecular pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound heterozygous and intronic mutations. Targeted RNA-seq-based systemic gene expression assay may help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.
Assuntos
Doenças Genéticas Inatas/genética , Fator de Transcrição STAT1/imunologia , Criança , Doenças Genéticas Inatas/diagnóstico , Humanos , Masculino , Mutação , RNA Mensageiro/genética , RNA-Seq , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genéticaRESUMO
BACKGROUND: Morquio A syndrome, mucopolysaccharidosis type IVA (MPS IVA), is a lysosomal storage disorder caused by the deficient activity of N-acetylgalactosamine-6-sulfatase (GalNac6S), due to alterations in the GALNS gene. This disorder results in marked abnormalities in bones and connective tissues, and affects multiple organs. Here, we describe the clinical course of a Japanese boy with MPS IVA who began enzyme replacement therapy (ERT) at the age of 24 months. PATIENT: the patient presented for kyphosis treatment at 22 months of age. An X-ray examination revealed dysostosis multiplex. Uronic acids were elevated in the urine and the keratan sulfate (KS) fraction was predominant. The leukocyte GalNac6S enzyme activity was extremely low. The patient exhibited the c.463G > A (p.Gly155Arg) mutation in GALNS. Based on these findings, his disease was diagnosed as classical (severe) Morquio A syndrome. An elosulfase alfa infusion was initiated at the age of 24 months. The patient's body height improved from -2.5 standard deviation (SD) to -2 SD and his physical activity increased during the first 9 months on ERT. However, he gradually developed paralysis in the lower legs with declining growth velocity, which required cervical decompression surgery in the second year of the ERT. The mild mitral regurgitation, serous otitis media, and mild hearing loss did not progress during treatment. CONCLUSION: early initiation of the elosulfase alfa to our patient showed good effects on the visceral system and muscle strength, while its effect on bones appeared limited. Careful observation is necessary to ensure timely surgical intervention for skeletal disorders associated with neurological symptoms. Centralized and multidisciplinary management is essential to improve the prognosis of pediatric patients with MPS IVA.
Assuntos
Condroitina Sulfatases/administração & dosagem , Terapia de Reposição de Enzimas/métodos , Mucopolissacaridose IV/terapia , Pré-Escolar , Condroitina Sulfatases/deficiência , Condroitina Sulfatases/genética , Humanos , Masculino , Mucopolissacaridose IV/enzimologia , Mucopolissacaridose IV/genética , Mutação , PrognósticoRESUMO
BACKGROUND: Ikaros, which is encoded by IKZF1, is a transcriptional factor that play a critical role in hematopoiesis. Somatic IKZF1 alterations are known to be involved in the pathogenesis of leukemia in human subjects. Recently, immunodeficiency caused by germline IKZF1 mutation has been described. OBJECTIVE: We sought to describe the clinical and immunologic phenotypes of Japanese patients with heterozygous IKZF1 mutations. METHODS: We performed whole-exome sequencing in patients from a dysgammaglobulinemia or autoimmune disease cohort and used a candidate gene approach in 4 patients. Functional and laboratory studies, including detailed lymphopoiesis/hematopoiesis analysis in the bone marrow, were performed. RESULTS: Nine patients from 6 unrelated families were identified to have heterozygous germline mutations in IKZF1. Age of onset was 0 to 20 years (mean, 7.4 years). Eight of 9 patients presented with dysgammaglobulinemia accompanied by B-cell deficiency. Four of 9 patients had autoimmune disease, including immune thrombocytopenic purpura, IgA vasculitis, and systemic lupus erythematosus. Nonautoimmune pancytopenia was observed in 1 patient. All of the mutant Ikaros protein demonstrated impaired DNA binding to the target sequence and abnormal diffuse nuclear localization. Flow cytometric analysis of bone marrow revealed reduced levels of common lymphoid progenitors and normal development of pro-B to pre-B cells. CONCLUSIONS: Germline heterozygous IKZF1 mutations cause dysgammaglobulinemia; hematologic abnormalities, including B-cell defect; and autoimmune diseases.
Assuntos
Doenças Autoimunes/genética , Doenças Hematológicas/genética , Fator de Transcrição Ikaros/genética , Adolescente , Adulto , Doenças Autoimunes/imunologia , Autoimunidade , Linfócitos B/imunologia , Criança , Feminino , Mutação em Linhagem Germinativa , Doenças Hematológicas/imunologia , Hematopoese/genética , Humanos , Fator de Transcrição Ikaros/imunologia , Contagem de Linfócitos , Masculino , Linfócitos T/imunologia , Adulto JovemRESUMO
BACKGROUND: Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. OBJECTIVE: We estimated variations in the CCD/DBD of STAT1. METHODS: We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. RESULTS: Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. CONCLUSION: The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases.
Assuntos
Alanina/genética , Infecções por Mycobacterium/genética , Fator de Transcrição STAT1/genética , Bioensaio , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutagênese , Mutação , Domínios ProteicosAssuntos
Genes Recessivos , Predisposição Genética para Doença , Transplante de Células-Tronco Hematopoéticas , Fator de Transcrição STAT1/deficiência , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gerenciamento Clínico , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Condicionamento Pré-Transplante/métodos , Resultado do TratamentoRESUMO
Cytotoxic T-lymphocyte-antigen 4 (CTLA-4) is an essential negative regulator expressed on regulatory T cells (Tregs) and activated T cells. Germline heterozygous mutations in CTLA4 lead to haploinsufficiency of CTLA-4, resulting in the development of an autosomal dominant immune dysregulation syndrome with incomplete penetrance. We report here a Japanese patient with this disorder who has a novel heterozygous single nucleotide insertion, 76_77insT (p. L28SfsX40), in the CTLA4 gene. Peripheral blood mononuclear cells from the patient showed decreased frequency of CTLA-4(high) cells in CD4(+)FOXP3(+) cells following CD3/CD28 stimulation. The patient experienced hypogammaglobulinemia, recurrent pneumonia, esophageal candidiasis, cytomegalovirus-positive chronic gastritis, chronic and severe diarrhea, and type 1 diabetes mellitus. Moreover, the patient developed multifocal gastric cancer, histologically poorly and well-differentiated adenocarcinomas, associated with chronic atrophic gastritis and intestinal metaplasia. Previously, 23 symptomatic cases with heterozygous CTLA4 mutations have been reported. Including the case presented here, 3 of the 24 cases (12.5%) developed gastric cancer. Notably, 2 of 3 patients presented similarly multifocal adenocarcinomas associated with atrophic gastritis and intestinal metaplasia. Predisposition to gastric cancer has been also reported in CVID patients. These clinical observations suggest that gastric cancer is a disease commonly associated with autosomal dominant immune dysregulation syndrome due to CTLA4 mutation.
Assuntos
Adenocarcinoma/diagnóstico , Antígeno CTLA-4/metabolismo , Infecções/diagnóstico , Neoplasias Gástricas/diagnóstico , Adenocarcinoma/genética , Adulto , Antígeno CTLA-4/genética , Análise Mutacional de DNA , Evolução Fatal , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Infecções/genética , Japão , Masculino , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genéticaRESUMO
We report a Japanese female patient presenting with classic features of CHARGE syndrome, including choanal atresia, growth and development retardation, ear malformations, genital anomalies, multiple endocrine deficiency, and unilateral facial nerve palsy. She was clinically diagnosed with typical CHARGE syndrome, but genetic analysis using the TruSight One Sequence Panel revealed a germline heterozygous mutation in KMT2D with no pathogenic CHD7 alterations associated with CHARGE syndrome. Kabuki syndrome is a rare multisystem disorder characterized by five cardinal manifestations including typical facial features, skeletal anomalies, dermatoglyphic abnormalities, mild to moderate intellectual disability, and postnatal growth deficiency. Germline mutations in KMT2D underlie the molecular pathogenesis of 52-76% of patients with Kabuki syndrome. This is an instructive case that clearly represents a phenotypic overlap between Kabuki syndrome and CHARGE syndrome. It suggests the importance of considering the possibility of a diagnosis of Kabuki syndrome even if patients present with typical symptoms and meet diagnostic criteria of CHARGE syndrome. The case also emphasizes the impact of non-biased exhaustive genetic analysis by next-generation sequencing in the genetic diagnosis of rare congenital disorders with atypical manifestations.
RESUMO
Pseudohypoaldosteronism type 1 (PHA1) is a disease characterized by neonatal salt loss due to aldosterone resistance. Two types of PHA1 are known: an autosomal recessive systemic form and an autosomal dominant renal form. The cause of the renal form of PHA1 is heterozygous mutations in NR3C2, which encodes the mineralocorticoid receptor (MR). We encountered two female Japanese infants with the renal form of PHA1 and analyzed NR3C2. The two patients had poor weight gain, and one was developmentally delayed. Genetic analysis identified one novel mutation (c.492_493insTT, p.Met166LeufsX8) and one previously reported mutation (p.R861X). The two produced a premature stop codon, resulting in haploinsufficiency of the MR. In conclusion, genetic analysis of NR3C2 is useful for diagnosis and planning therapeutic strategies.
RESUMO
This report describes 3 year old girl with the unusual presentation of polyarticular juvenile idiopathic arthritis (JIA) with anti-cyclic citrullinated peptide (anti-CCP) antibodies and a positive rheumatoid factor (RF). She was initially treated with a nonsteroidal anti-inflammatory drug (NSAID; ibuprofen) followed by methotrexate (MTX, 10 mg/m2/week) and prednisolone (0.25 mg/kg/day), but these treatments were ineffective. Administration of tocilizumab, a humanized antihuman interleukin-6 receptor monoclonal antibody, promptly improved her clinical manifestations, and she has been in complete remission (DAS28 <2.6) without bone erosion and/or destruction. Positivity for both antibodies (anti-CCP and RF) can forecast the severity of JIA (radiographic bone destruction). In such cases the administration of biologic remissive therapy may be prudent early in the disease course.