RESUMO
The re-suspension of sediments in combined sewers and the associated pollutants into the bulk water during wet weather flows can cause pollutants to be carried further downstream to receiving waters or discharged via Combined Sewer Overflows (CSO). A typical pollutograph shows the trend of released bulk pollutants with time but does not consider information on the biodegradability of these pollutants. A new prediction methodology based on Oxygen Utilisation Rate (respirometric method) and Erosionmeter (laboratory device replicating in-sewer erosion) experiments is proposed which is able to predict the trends in biodegradability during in-sewer sediment erosion in wet weather conditions. The proposed new prediction methodology is also based on COD fractionation techniques.
Assuntos
Modelos Teóricos , Esgotos , Poluentes da Água/metabolismo , Biodegradação Ambiental , Previsões , Oxigênio/análise , Chuva , Fatores de Tempo , Eliminação de Resíduos Líquidos , Movimentos da ÁguaRESUMO
In times of high sewer flow, conditions can exist which enable previously deposited material to be re-entrained back into the body of the flow column. Pulses of this highly polluted flow have been recorded in many instances at the recently constructed wastewater treatment plant (WTP) in Forfar, Scotland. Investigations have been undertaken to characterise the incoming flows and to suggest remedial measures to manage the quality fluctuations. Initial visits to the works and incoming pipes indicated a high degree of sediment deposition in the two inlet pipes. Analyses were carried out and consequently, changes to the hydraulic regime were made. Measurements of sediment level, sediment quality, wall slime and bulk water quality were monitored in the period following the remedial works to observe any improvements. Dramatic alterations in each of the determinands measured were recorded. Analyses were then undertaken to determine long term sediment behaviour and to assess the future usefulness of existing upstream sediment traps. It was concluded that with proper maintenance of the traps, the new hydraulic regime is sufficient to prevent further significant build up of sediment deposits and reduce impacts on the WTP. Further investigations made by North of Scotland Water Authority highlighted trade inputs to the system which may also have contributed to the now managed foul flush problem.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Movimentos da Água , Poluição da Água/prevenção & controle , Arquitetura de Instituições de Saúde , Sedimentos GeológicosRESUMO
The problems associated with solids in sewerage systems result in common difficulties such as blockages and flooding and the subsequent maintenance requirements have been well documented. Concerns regarding pollutant release have also been demonstrated, with the contribution from in-sewer solids to the quality of the flow during a storm event being especially significant. These events known as "foul flushes" in combined sewers typically occur in the initial period of storm flows, when the concentration of suspended sediments and other pollutants are significantly higher than at other times. Traditionally impacts from these events have been related to the suspended solids phase of the flow passing through a CSO structure. It is now apparent that much of the suspended load originates from solids eroded from the bed. The "near bed solids" which are re-entrained into the flow, together with solids eroded from the bulk bed, account for large changes in the suspended sediment concentration under time varying flow conditions. The influence of these eroded solids and their potential impact on receiving waters and treatment plants will be reviewed using data obtained from field studies carried out in the main Dundee interceptor sewer in Scotland. This paper describes some of the methods employed to investigate the characteristics of the pollutants associated with solids erosion in combined sewers.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água , Falha de Equipamento , Arquitetura de Instituições de Saúde , Oxigênio/metabolismo , Tamanho da Partícula , Chuva , Movimentos da ÁguaRESUMO
The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues.
Assuntos
Anti-Infecciosos Locais/análise , Esgotos/química , Poluentes do Solo/análise , Solo/química , Triclosan/análise , Monitoramento Ambiental , Eliminação de Resíduos LíquidosRESUMO
The application of sewage sludge to land can expose soils to a range of associated chemical toxicants. In this paper we explore the effects of the broad spectrum anti-microbial compound triclosan on the phenotypic composition of the microbial communities of three soils of contrasting texture (loamy sand, sandy loam and clay) using phospholipid fatty-acid (PLFA) analysis. Each soil type was dosed and subsequently re-dosed 6 weeks later with triclosan at five nominal concentrations in microcosms (10, 100, 500, 1000 mg kg(-1) and a zero-dose control). PLFA profiles were analysed using multivariate statistics focussing on changes in the soil phenotypic community structure. Additionally, ratios of fungal:bacterial PLFA indicators and cyclo:mono-unsaturated PLFAs (a common stress indicator) were calculated. It was hypothesised that triclosan addition would alter the community structure in each soil with a particular effect on the fungal:bacterial ratio, since bacteria are likely to be more susceptible to triclosan than fungi. It was also hypothesised that the PLFA response to re-dosing would be suppressed due to acclimation. Although the microbial community structure changed over the course of the experiment, the response was complex. Soil type and time emerged as the most important explanatory factors. Principal component analysis was used to detect phenotypic responses to different doses of triclosan in each soil. As expected, there was a significant increase in the fungal:bacterial ratio with triclosan dose especially in treatments with the highest nominal concentrations. Furthermore, the PLFA response to re-dosing was negligible in all soils confirming the acclimation hypothesis.