Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Lab Invest ; 103(4): 100038, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870288

RESUMO

Adrenomedullin 2 (AM2; also known as intermedin) is a member of the adrenomedullin (AM) peptide family. Similarly to AM, AM2 partakes in a variety of physiological activities. AM2 has been reported to exert protective effects on various organ disorders; however, its significance in the eye is unknown. We investigated the role of AM2 in ocular diseases. The receptor system of AM2 was expressed more abundantly in the choroid than in the retina. In an oxygen-induced retinopathy model, physiological and pathologic retinal angiogenesis did not differ between AM2-knockout (AM2-/-) and wild-type mice. In contrast, in laser-induced choroidal neovascularization, a model of neovascular age-related macular degeneration, AM2-/- mice had enlarged and leakier choroidal neovascularization lesions, with exacerbated subretinal fibrosis and macrophage infiltration. Contrary to this, exogenous administration of AM2 ameliorated the laser-induced choroidal neovascularization-associated pathology and suppressed gene expression associated with inflammation, fibrosis, and oxidative stress, including that of VEGF-A, VEGFR-2, CD68, CTGF, and p22-phox. The stimulation of human adult retinal pigment epithelial (ARPE) cell line 19 cells with TGF-ß2 and TNF-α induced epithelial-to-mesenchymal transition (EMT), whereas AM2 expression was also elevated. The induction of EMT was suppressed when the ARPE-19 cells were pretreated with AM2. A transcriptome analysis identified 15 genes, including mesenchyme homeobox 2 (Meox2), whose expression was significantly altered in the AM2-treated group compared with that in the control group. The expression of Meox2, a transcription factor that inhibits inflammation and fibrosis, was enhanced by AM2 treatment and attenuated by endogenous AM2 knockout in the early phase after laser irradiation. The AM2 treatment of endothelial cells inhibited endothelial to mesenchymal transition and NF-κB activation; however, this effect tended to be canceled following Meox2 gene knockdown. These results indicate that AM2 suppresses the neovascular age-related macular degeneration-related pathologies partially via the upregulation of Meox2. Thus, AM2 may be a promising therapeutic target for ocular vascular diseases.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Neuropeptídeos , Humanos , Camundongos , Animais , Adrenomedulina/genética , Adrenomedulina/farmacologia , Adrenomedulina/uso terapêutico , Células Endoteliais/metabolismo , Neovascularização de Coroide/genética , Neovascularização de Coroide/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Inflamação/patologia , Fibrose , Neuropeptídeos/uso terapêutico
2.
Rinsho Ketsueki ; 64(3): 224-229, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37019678

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a disorder in which an activated complement causes intravascular hemolysis of erythrocytes that do not have complement regulators. It is critical to monitor the rapid progression of hemolysis caused by infection and thrombosis. As far as we can tell, this is the first report of 5 COVID-19 patients with PNH in Japan. Three patients were being treated with ravulizumab, one with eculizumab, and one with crovalimab. All five cases had received two or more COVID-19 vaccinations. COVID-19 was classified as mild in four cases and moderate in one. None of the cases required the use of oxygen, and none became severe. All of them experienced breakthrough hemolysis, and two required red blood cell transfusions. In any case, no thrombotic complications were observed.


Assuntos
COVID-19 , Hemoglobinúria Paroxística , Trombose , Humanos , Hemoglobinúria Paroxística/terapia , Hemólise , Anticorpos Monoclonais , Eritrócitos
3.
Am J Pathol ; 191(4): 652-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385343

RESUMO

Age-related macular degeneration (AMD) is a leading cause of visual impairment. Anti-vascular endothelial growth factor drugs used to treat AMD carry the risk of inducing subretinal fibrosis. We investigated the use of adrenomedullin (AM), a vasoactive peptide, and its receptor activity-modifying protein 2, RAMP2, which regulate vascular homeostasis and suppress fibrosis. The therapeutic potential of the AM-RAMP2 system was evaluated after laser-induced choroidal neovascularization (LI-CNV), a mouse model of AMD. Neovascular formation, subretinal fibrosis, and macrophage invasion were all enhanced in both AM and RAMP2 knockout mice compared with those in wild-type mice. These pathologic changes were suppressed by intravitreal injection of AM. Comprehensive gene expression analysis of the choroid after LI-CNV with or without AM administration revealed that fibrosis-related molecules, including Tgfb, Cxcr4, Ccn2, and Thbs1, were all down-regulated by AM. In retinal pigment epithelial cells, co-administration of transforming growth factor-ß and tumor necrosis factor-α induced epithelial-mesenchymal transition, which was also prevented by AM. Finally, transforming growth factor-ß and C-X-C chemokine receptor type 4 (CXCR4) inhibitors eliminated the difference in subretinal fibrosis between RAMP2 knockout and wild-type mice. These findings suggest the AM-RAMP2 system suppresses subretinal fibrosis in LI-CNV by suppressing epithelial-mesenchymal transition.


Assuntos
Adrenomedulina/metabolismo , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Animais , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/fisiologia , Fibrose/metabolismo , Humanos , Injeções Intravítreas/métodos , Camundongos Knockout , Proteína 2 Modificadora da Atividade de Receptores/genética , Epitélio Pigmentado da Retina/metabolismo
4.
Int J Clin Oncol ; 26(12): 2310-2317, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34494172

RESUMO

BACKGROUND: No standard treatment exists for locally advanced prostate cancer (PC). This study evaluated the long-term treatment outcomes and toxicity in patients with clinically locally advanced and/or lymph node (LN)-positive PC who underwent high-dose-rate brachytherapy (HDR-BT) with external beam radiotherapy (EBRT). METHODS: The treatment outcomes and toxicities of 152 patients with PC who underwent HDR-BT with EBRT and had at least 2 years of observation were examined. The treatment dose was 19- and 13-Gy HDR-BT in two and single fractions, respectively, both combined with external irradiation of 46 Gy in 23 fractions. Long-term androgen deprivation therapy (ADT) for patients harboring very high-risk tumors was used in combination. RESULTS: The median observation period was 59.7 (24.4-182.1) months. The 5-year prostate cancer-specific and recurrence-free (RFS) survival rates were 99.0% and 91.8%, respectively, with only two PC mortalities. When 5-year RFS was examined for each parameter, RFS was significantly lower in pre-radiotherapy (pre-RT) prostate-specific antigen (PSA) > 0.5 ng/mL (77.1%; p = 0.008), and presence of LN metastasis (68.1%; p = 0.017). Multivariable analysis demonstrated that pre-RT PSA (HR, 4.68; 95% CI, 1.39-15.67; p = 0.012) and presence of LN metastasis (HR, 4.70; 95% CI, 1.24-17.74; p = 0.022) were independent recurrence predictors. The 5-year cumulative incidence rate of grade ≥ 2 toxicities in genitourinary and gastrointestinal tracts were 15.4% and 1.3%, respectively. CONCLUSIONS: HDR-BT combined with EBRT and long-term ADT shows promising disease control and tolerant toxicities for clinically locally advanced and LN-positive PC.


Assuntos
Braquiterapia , Neoplasias da Próstata , Antagonistas de Androgênios , Humanos , Calicreínas , Masculino , Recidiva Local de Neoplasia , Antígeno Prostático Específico , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Estudos Retrospectivos
5.
Am J Pathol ; 189(12): 2487-2502, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31541644

RESUMO

Lymphedema is a chronic condition caused by disruption of lymphatic vessels, which often occurs after invasive surgery. Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide produced by alternative splicing of the primary transcript of the calcitonin/CGRP gene (Calca). CGRP was initially identified as a neuropeptide released primarily from sensory nerves and involved in regulating pathophysiological nociceptive pain. However, recent studies have shown CGRP is also released from a variety of other cells and possesses multiple functions. In this study, CGRP knockout (-/-) mice were used to show the actions of endogenous CGRP in postoperative lymphedema. After generating a mouse postoperative tail lymphedema model, the edema was observed to be more severe in CGRP-/- mice than in wild-type mice. Numbers of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1)-positive lymphatic capillaries were decreased and lymphatic capillary formation-related factors were down-regulated in CGRP-/- mice. In addition, accumulation of M2 but not M1 macrophages was selectively reduced in the edematous tissue of CGRP-/- mice. Selective depletion of M2 macrophages decreased lymphatic capillary formation and worsened lymphedema in wild-type mice but not CGRP-/- mice, where numbers of M2 macrophages were already diminished. These findings suggest that endogenous CGRP acts to ameliorate postoperative lymphedema by enhancing lymphatic capillary formation and that M2 macrophages play critical roles. CGRP may be a useful therapeutic target for the treatment of postoperative lymphedema.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Modelos Animais de Doenças , Linfangiogênese , Vasos Linfáticos/patologia , Linfedema/patologia , Macrófagos/patologia , Complicações Pós-Operatórias , Animais , Vasos Linfáticos/metabolismo , Linfedema/etiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Am J Pathol ; 189(2): 449-466, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30658846

RESUMO

Central retinal vein occlusion (CRVO) is an intractable disease that causes visual acuity loss with retinal ischemia, hemorrhage, and edema. In this study, we developed an experimental CRVO model in mice and evaluated the therapeutic potential of the pleiotropic peptide adrenomedullin (ADM) and its receptor activity-modifying protein 2 (RAMP2). The CRVO model, which had phenotypes resembling those seen in the clinic, was produced by combining i.p. injection of Rose bengal, a photoactivator dye enhancing thrombus formation, with laser photocoagulation. Retinal vascular area, analyzed using fluorescein angiography and fluorescein isothiocyanate-perfused retinal flat mounts, was decreased after induction of CRVO but gradually recovered from day 1 to 7. Measurements of retinal thickness using optical coherence tomography and histology revealed prominent edema early after CRVO, followed by gradual atrophy. Reperfusion after CRVO was diminished in Adm and Ramp2 knockout (KO) mice but was increased by exogenous ADM administration. CRVO also increased expression of a coagulation factor, oxidative stress markers, and a leukocyte adhesion molecule in both wild-type and Adm KO mice, and the effect was more pronounced in Adm KO mice. Using retinal capillary endothelial cells, ADM was found to directly suppress retinal endothelial injury. The retinoprotective effects of the Adm-Ramp2 system make it a novel therapeutic target for the treatment of CRVO.


Assuntos
Adrenomedulina , Angiofluoresceinografia , Proteína 2 Modificadora da Atividade de Receptores , Oclusão da Veia Retiniana , Tomografia de Coerência Óptica , Adrenomedulina/genética , Adrenomedulina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Oclusão da Veia Retiniana/diagnóstico por imagem , Oclusão da Veia Retiniana/genética , Oclusão da Veia Retiniana/metabolismo , Oclusão da Veia Retiniana/terapia
7.
IUBMB Life ; 71(7): 835-844, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635953

RESUMO

Genome editing, as exemplified by CRISPR/Cas9, is now recognized as a powerful tool for the engineering of endogenous target genes. It employs only two components, namely, Cas9 in the form of DNA, mRNA, or protein; and guide RNA (gRNA), which is specific to a target gene. When these components are transferred to cells, they create insertion/deletion mutations (indels) within a target gene. Therefore, when fetuses within the uteri of pregnant murine females are exposed to these reagents, fetal cells incorporating them should show mutations in the target gene. To examine a possible genome editing of fetal cells in vivo, we intravenously administered a solution containing plasmid DNA-FuGENE complex to pregnant wild-type female mice [which had been successfully mated with enhanced green fluorescent protein (EGFP)-expressing male transgenic mice] on day 12.5 of gestation. The plasmid DNA induces the expression of gRNA, which was targeted at the EGFP cDNA, and that of the Cas9 gene. All fetuses in the pregnant females should express EGFP systemically, since they are heterozygous (Tg/+) for the transgene. Thus, the delivery of CRISPR system targeted at EGFP in the fetuses will cause a reduced expression of EGFP as a result of the genome editing of EGFP genomic sequence. Of the 24 fetuses isolated from three pregnant females 2 days after gene delivery, 3 were found to have reduced fluorescence in their hearts. Genotyping of the dissected hearts revealed the presence of the transgene construct (Cas9 gene) in all the samples. Furthermore, all the three samples exhibited mutations at the target loci, although normal cells were also present. Thus, transplacental delivery of gene editing components may be a useful tool for developing animal models with heart disorder for heart-related disease research, and gene therapy in congenital heart defects such as hypertrophic cardiomyopathy (HCM). © 2019 IUBMB Life, 9999(9999):1-10, 2019.


Assuntos
Feto/fisiologia , Edição de Genes , Proteínas de Fluorescência Verde/genética , Coração/embriologia , Mutação , Miócitos Cardíacos/fisiologia , RNA Guia de Cinetoplastídeos/genética , Animais , Proteína 9 Associada à CRISPR/administração & dosagem , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Genoma , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Plasmídeos , RNA Guia de Cinetoplastídeos/administração & dosagem , Transgenes
8.
Nucleic Acids Res ; 45(9): 5387-5398, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28115634

RESUMO

The mouse PIWI-interacting RNA (piRNA) pathway produces a class of 26-30-nucleotide (nt) small RNAs and is essential for spermatogenesis and retrotransposon repression. In oocytes, however, its regulation and function are poorly understood. In the present study, we investigated the consequences of loss of piRNA-pathway components in growing oocytes. When MILI (or PIWIL2), a PIWI family member, was depleted by gene knockout, almost all piRNAs disappeared. This severe loss of piRNA was accompanied by an increase in transcripts derived from specific retrotransposons, especially IAPs. MIWI (or PIWIL1) depletion had a smaller effect. In oocytes lacking PLD6 (or ZUCCHINI or MITOPLD), a mitochondrial nuclease/phospholipase involved in piRNA biogenesis in male germ cells, the piRNA level was decreased to 50% compared to wild-type, a phenotype much milder than that in males. Since PLD6 is essential for the creation of the 5΄ ends of primary piRNAs in males, the presence of mature piRNA in PLD6-depleted oocytes suggests the presence of compensating enzymes. Furthermore, we identified novel 21-23-nt small RNAs, termed spiRNAs, possessing a 10-nt complementarity with piRNAs, which were produced dependent on MILI and independent of DICER. Our study revealed the differences in the biogenesis and function of the piRNA pathway between sexes.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas Mitocondriais/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Fosfolipase D/metabolismo , Animais , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos Endogâmicos C57BL , Oócitos/ultraestrutura , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo , Retroelementos/genética
9.
Am J Pathol ; 187(5): 999-1015, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28322199

RESUMO

Diabetic macular edema (DME) is caused by blood-retinal barrier breakdown associated with retinal vascular hyperpermeability and inflammation, and it is the major cause of visual dysfunction in diabetic retinopathy. Adrenomedullin (ADM) is an endogenous peptide first identified as a strong vasodilator. ADM is expressed in the eyes and is up-regulated in various eye diseases, although the pathophysiological significance is largely unknown. We investigated the effect of ADM on DME. In Kimba mice, which overexpress human vascular endothelial growth factor in their retinas, the capillary dropout, vascular leakage, and vascular fragility characteristic of diabetic retinopathy were observed. Intravitreal or systemic administration of ADM to Kimba mice ameliorated both the capillary dropout and vascular leakage. Evaluation of the transendothelial electrical resistance and fluorescein isothiocyanate-dextran permeability of an endothelial cell monolayer using TR-iBRB retinal capillary endothelial cells revealed that vascular endothelial growth factor enhanced vascular permeability but that co-administration of ADM suppressed the effect, in part by enhancing tight junction formation between endothelial cells. In addition, a comprehensive PCR array analysis showed that ADM administration suppressed various molecules related to inflammation and NF-κB signaling within retinas. From these results, we suggest that by exerting inhibitory effects on retinal inflammation, vascular permeability, and blood-retinal barrier breakdown, ADM could serve as a novel therapeutic agent for the treatment of DME.


Assuntos
Adrenomedulina/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Retinopatia Diabética/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Vasodilatadores/farmacologia , Adrenomedulina/administração & dosagem , Animais , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Impedância Elétrica , Células Endoteliais/fisiologia , Injeções Intravítreas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Retinite/fisiopatologia , Vasodilatadores/administração & dosagem
10.
Inorg Chem ; 57(5): 2908-2916, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431437

RESUMO

The fcc lattice of porous Cu prepared by dealloying Al2Cu with HCl aqueous solution exhibits a high density of twinning defects with an average domain size of about 3 nm along the ⟨111⟩ directions. The high density of twinning was verified by X-ray diffraction and qualitatively interpreted by a structural model showing the 5% probability of twinning defect formation. Most of the twinning defects disappeared after annealing at 873 K for 24 h. Twinned Cu reveals much faster oxidation rate in comparison to that without (or with much fewer) twinning defects, as shown by X-ray diffraction and hydrogen differential scanning calorimetry. Using ab initio DFT calculations, we demonstrate that twinning defects in porous Cu are able to form nucleation centers for the growth of Cu2O. The geometry of the V-shaped edges on the twinned {211} surfaces is favorable for formation of the basic structural elements of Cu2O. The fast oxidation of porous Cu prepared by dealloying can thus be explained by the fast formation of the Cu2O nucleation centers and their high density.

11.
Int J Mol Sci ; 19(4)2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617297

RESUMO

Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 (hCas9) gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes , Toxinas Biológicas/genética , Alelos , Animais , Sequência de Bases , Edição de Genes , Técnicas de Inativação de Genes , Vetores Genéticos , Genótipo , Glicosídeo Hidrolases/genética , Humanos , Mutação INDEL , Mamíferos/genética , RNA Guia de Cinetoplastídeos
12.
J Infect Chemother ; 23(4): 211-213, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28094124

RESUMO

QuantiFERON-TB gold in-tube has been used for screening latent tuberculosis infection in newly employed health care workers in Japan. There have been a few studies concerning quality control. We retrospectively analysed QuantiFERON-TB gold in-tube results in a hospital in Japan. Interferon-γ values in three blood collection tubes for QuantiFERON-TB gold in-tube were analysed in association with the positivity rate. The data set consisted of health care workers aged 20-29 years during the 7 years between 2010 and 2016. The yearly QuantiFERON-TB gold in-tube positivity rate was 0.9%, 16.4%, 3.0%, 39.3%, 2.8%, 0.9% and 1.5%, and was extremely high in 2011 and 2013. The interferon-γ values in the tuberculosis antigen tube were elevated in these two years, as indicated by higher median and wider interquartile range. The interferon-γ value in the negative control tube was also higher in 2011. The higher interferon-γ values in collection tubes (tuberculosis antigen tube and/or negative control tube) resulted in higher QuantiFERON-TB gold in-tube positivity rate. The distribution of interferon-γ in tuberculosis antigen tube and negative control tube, as evaluated by median and interquartile range, proved to be an effective index for the quality control of QuantiFERON-TB gold in-tube.


Assuntos
Tuberculose Latente/diagnóstico , Tuberculose Latente/microbiologia , Teste Tuberculínico/métodos , Adulto , Ouro , Pessoal de Saúde , Humanos , Interferon gama/metabolismo , Testes de Liberação de Interferon-gama/métodos , Japão , Tuberculose Latente/metabolismo , Programas de Rastreamento/métodos , Controle de Qualidade , Estudos Retrospectivos , Adulto Jovem
13.
Int J Mol Sci ; 18(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207527

RESUMO

The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT) has been frequently employed as one of the efficient tools for the production of genetically modified (GM) animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg) RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen), is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B4 isolectin for 2 h at 37 C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.


Assuntos
Edição de Genes/métodos , Alelos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Galactosiltransferases/genética , Lectinas/genética , Mutação , Técnicas de Transferência Nuclear , Suínos
14.
Genome Res ; 23(4): 616-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410886

RESUMO

Dynamic epigenetic reprogramming occurs during mammalian germ cell development, although the targets of this process, including DNA demethylation and de novo methylation, remain poorly understood. We performed genome-wide DNA methylation analysis in male and female mouse primordial germ cells at embryonic days 10.5, 13.5, and 16.5 by whole-genome shotgun bisulfite sequencing. Our high-resolution DNA methylome maps demonstrated gender-specific differences in CpG methylation at genome-wide and gene-specific levels during fetal germline progression. There was extensive intra- and intergenic hypomethylation with erasure of methylation marks at imprinted, X-linked, or germline-specific genes during gonadal sex determination and partial methylation at particular retrotransposons. Following global demethylation and sex determination, CpG sites switched to de novo methylation in males, but the X-linked genes appeared resistant to the wave of de novo methylation. Significant differential methylation at a subset of imprinted loci was identified in both genders, and non-CpG methylation occurred only in male gonocytes. Our data establish the basis for future studies on the role of epigenetic modifications in germline development and other biological processes.


Assuntos
Metilação de DNA , Epigênese Genética , Células Germinativas/metabolismo , Animais , Análise por Conglomerados , Ilhas de CpG , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Fatores Sexuais
15.
Am J Pathol ; 185(6): 1783-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25857228

RESUMO

Calcitonin gene-related peptide (CGRP; official name CALCA) has a variety of functions and exhibits both angiogenic and anti-inflammatory properties. We previously reported the angiogenic effects of the CGRP family peptide adrenomedullin in oxygen-induced retinopathy; however, the effects of CGRP on ocular angiogenesis remain unknown. Herein, we used CGRP knockout (CGRP(-/-)) mice to investigate the roles of CGRP in ocular vascular disease. Observation of pathological retinal angiogenesis in the oxygen-induced retinopathy model revealed no difference between CGRP(-/-) and wild-type mice. However, much higher levels of the CGRP receptor were present in the choroid than the retina. Laser-induced choroidal neovascularization (CNV), a model of exudative age-related macular degeneration, revealed more severe CNV lesions in CGRP(-/-) than wild-type mice, and fluorescein angiography showed greater leakage from CNV in CGRP(-/-). In addition, macrophage infiltration and tumor necrosis factor (TNF)-α production were enhanced within the CNV lesions in CGRP(-/-) mice, and the TNF-α, in turn, suppressed the barrier formation of retinal pigment epithelial cells. In vivo, CGRP administration suppressed CNV formation, and CGRP also dose dependently suppressed TNF-α production by isolated macrophages. From these data, we conclude that CGRP suppresses the development of leaky CNV through negative regulation of inflammation. CGRP may thus be a promising therapeutic agent for the treatment of ocular vascular diseases associated with inflammation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Neovascularização de Coroide/metabolismo , Retina/metabolismo , Vasos Retinianos/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Neovascularização de Coroide/genética , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Retina/patologia , Vasos Retinianos/patologia
16.
Int J Mol Sci ; 17(9)2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27589724

RESUMO

The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes.


Assuntos
Elementos de DNA Transponíveis/genética , Técnicas de Transferência de Genes , Técnicas de Transferência Nuclear , Porco Miniatura/genética , Transgenes , Animais , Blastocisto/metabolismo , Resistência a Medicamentos/genética , Feminino , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Gravidez , Suínos
17.
PLoS Genet ; 8(1): e1002440, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22242016

RESUMO

Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Epigênese Genética , Impressão Genômica , Células Germinativas/metabolismo , Oócitos/metabolismo , Espermatozoides/metabolismo , Animais , Blastocisto/metabolismo , Ilhas de CpG/genética , DNA Complementar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Estudo de Associação Genômica Ampla , Células Germinativas/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
18.
Int J Mol Sci ; 16(8): 17838-56, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26247938

RESUMO

Some reports demonstrated successful genome editing in pigs by one-step zygote microinjection of mRNA of CRISPR/Cas9-related components. Given the relatively long gestation periods and the high cost of housing, the establishment of a single blastocyst-based assay for rapid optimization of the above system is required. As a proof-of-concept, we attempted to disrupt a gene (GGTA1) encoding the α-1,3-galactosyltransferase that synthesizes the α-Gal epitope using parthenogenetically activated porcine oocytes. The lack of α-Gal epitope expression can be monitored by staining with fluorescently labeled isolectin BS-I-B4 (IB4), which binds specifically to the α-Gal epitope. When oocytes were injected with guide RNA specific to GGTA1 together with enhanced green fluorescent protein (EGFP) and human Cas9 mRNAs, 65% (24/37) of the developing blastocysts exhibited green fluorescence, although almost all (96%, 23/24) showed a mosaic fluorescent pattern. Staining with IB4 revealed that the green fluorescent area often had a reduced binding activity to IB4. Of the 16 samples tested, six (five fluorescent and one non-fluorescent blastocysts) had indel mutations, suggesting a correlation between EGFP expression and mutation induction. Furthermore, it is suggested that zygote microinjection of mRNAs might lead to the production of piglets with cells harboring various mutation types.


Assuntos
Galactosiltransferases/genética , Inativação Gênica , Mutação INDEL , Mosaicismo , Oócitos/metabolismo , RNA Mensageiro/genética , Animais , Sistemas CRISPR-Cas , Citoplasma/metabolismo , Feminino , Técnicas de Inativação de Genes/métodos , Humanos , Taxa de Mutação , Partenogênese , Suínos
19.
J Mol Cell Cardiol ; 77: 73-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25264174

RESUMO

Adrenomedullin (AM) is a vasoactive peptide that possesses various bioactivities. AM receptors are dimers consisting of CLR with one of two accessory proteins, RAMP2 or RAMP3. The functional difference between CLR/RAMP2 and CLR/RAMP3 and the relationship between the two receptors remain unclear. To address these issues, we generated RAMP2 and RAMP3 knockout (-/-) mice and have been studying their physiological activities in the vascular system. AM-/- and RAMP2-/- mice die in utero due to blood vessel abnormalities, which is indicative of their essential roles in vascular development. In contrast, RAMP3-/- mice were born normally without any major abnormalities. In adult RAMP3-/- mice, postnatal angiogenesis was normal, but lymphangiography using indocyanine green (ICG) showed delayed drainage of subcutaneous lymphatic vessels. Moreover, chyle transport by intestinal lymphatics was delayed in RAMP3-/- mice, which also showed more severe interstitial edema than wild-type mice in a tail lymphedema model, with characteristic dilatation of lymphatic capillaries and accumulation of inflammatory cells. In scratch-wound assays, migration of isolated RAMP3-/- lymphatic endothelial cells was delayed as compared to wild-type cells, and AM administration failed to enhance the re-endothelialization. The delay in re-endothelialization was due to a primary migration defect rather than a decrease in proliferation. These results suggest that RAMP3 regulates drainage through lymphatic vessels, and that the AM-RAMP3 system could be a novel therapeutic target for controlling postoperative lymphedema.


Assuntos
Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Endotélio Linfático/metabolismo , Endotélio Linfático/patologia , Feminino , Genes Letais , Membro Posterior/irrigação sanguínea , Isquemia/genética , Isquemia/metabolismo , Linfedema/genética , Linfedema/metabolismo , Masculino , Camundongos Knockout , Transplante de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo
20.
Circulation ; 127(7): 842-53, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23355623

RESUMO

BACKGROUND: Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. METHODS AND RESULTS: We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. CONCLUSIONS: Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.


Assuntos
Adrenomedulina/metabolismo , Arteriosclerose/metabolismo , Endotélio Vascular/metabolismo , Homeostase/fisiologia , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Arteriosclerose/patologia , Arteriosclerose/fisiopatologia , Caderinas/genética , Caderinas/metabolismo , Modelos Animais de Doenças , Edema/metabolismo , Edema/patologia , Edema/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Fibrose/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Proteína 2 Modificadora da Atividade de Receptores/genética , Vasculite/metabolismo , Vasculite/patologia , Vasculite/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA