Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892069

RESUMO

Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.


Assuntos
Biomarcadores , Sarcopenia , Humanos , Biomarcadores/sangue , Sarcopenia/metabolismo , Sarcopenia/sangue , Sarcopenia/patologia , Projetos Piloto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Citocinas/metabolismo , Citocinas/sangue , Osteoclastos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia
2.
BMC Musculoskelet Disord ; 24(1): 57, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683022

RESUMO

BACKGROUND CONTEXT: Fast-track is an evidence-based multidisciplinary strategy for pre-, intra-, and postoperative management of patients during major surgery. To date, fast-track has not been recognized or accepted in all surgical areas, particularly in orthopedic spine surgery where it still represents a relatively new paradigm. PURPOSE: The aim of this review was provided an evidenced-based assessment of specific interventions, measurement, and associated outcomes linked to enhanced recovery pathways in spine surgery field. METHODS: We conducted a systematic review in three databases from February 2012 to August 2022 to assess the pre-, intra-, and postoperative key elements and the clinical evidence of fast-track protocols as well as specific interventions and associated outcomes, in patients undergoing to spine surgery. RESULTS: We included 57 full-text articles of which most were retrospective. Most common fast-track elements included patient's education, multimodal analgesia, thrombo- and antibiotic prophylaxis, tranexamic acid use, urinary catheter and drainage removal within 24 hours after surgery, and early mobilization and nutrition. All studies demonstrated that these interventions were able to reduce patients' length of stay (LOS) and opioid use. Comparative studies between fast-track and non-fast-track protocols also showed improved pain scores without increasing complication or readmission rates, thus improving patient's satisfaction and functional recovery. CONCLUSIONS: According to the review results, fast-track seems to be a successful tool to reduce LOS, accelerate return of function, minimize postoperative pain, and save costs in spine surgery. However, current studies are mainly on degenerative spine diseases and largely restricted to retrospective studies with non-randomized data, thus multicenter randomized trials comparing fast-track outcomes and implementation are mandatory to confirm its benefit in spine surgery.


Assuntos
Ortopedia , Doenças da Coluna Vertebral , Humanos , Tempo de Internação , Dor Pós-Operatória/etiologia , Estudos Retrospectivos , Doenças da Coluna Vertebral/cirurgia , Doenças da Coluna Vertebral/complicações , Coluna Vertebral/cirurgia
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675259

RESUMO

Exploring innovative techniques and treatments to improve spinal fusion procedures is a global challenge. Here, we provide a scientific opinion on the ability of a vertebral bone marrow (vBM) clot to provide a local combined delivery system not only of stem cells, signaling biomolecules and anti-inflammatory factors but also of molecules and proteins endowed with antimicrobial properties. This opinion is based on the evaluation of the intrinsic basic properties of the vBM, that contains mesenchymal stem cells (MSCs), and on the coagulation process that led to the conversion of fibrinogen into fibrin fibers that enmesh cells, plasma but above all platelets, to form the clot. We emphasize that vBM clot, being a powerful source of MSCs and platelets, would allow the release of antimicrobial proteins and molecules, mainly cathelicidin LL- 37, hepcidin, kinocidins and cationic host defense peptides, that are per se gifted with direct and/or indirect antimicrobial effects. We additionally highlight that further studies are needed to deepen this knowledge and to propose vBM clot as multifunctional bioscaffold able to target all the main key challenges for spinal fusion surgery.


Assuntos
Anti-Infecciosos , Trombose , Humanos , Medula Óssea , Coagulação Sanguínea , Plaquetas/metabolismo , Trombose/metabolismo , Anti-Infecciosos/farmacologia
4.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203314

RESUMO

The objective of this review is to systematically analyze the potential correlation between gut microbiota and osteoarthritis (OA) as well as to evaluate the feasibility of microbiota-targeted therapies for treating OA. Studies conducted from October 2013 to October 2023 were identified via a search on electronic databases such as PubMed, Web of Science, and Scopus, following established PRISMA statement standards. Two reviewers independently screened, assessed, and extracted relevant data, and then they graded the studies using the ROBINS I tool for non-randomized interventions studies and SYRCLE's risk-of-bias tool for animal studies. A search through 370 studies yielded 38 studies (24 preclinical and 14 clinical) that were included. In vivo research has predominantly concentrated on modifying the gut microbiota microenvironment, using dietary supplements, probiotics, and prebiotics to modify the OA status. Lactobacilli are the most thoroughly examined with Lactobacillus acidophilus found to effectively reduce cartilage damage, inflammatory factors, and pain. Additionally, Lactobacillus M5 inhibits the development of OA by preventing high-fat diet (HFD)-induced obesity and protecting cartilage from damage. Although there are limited clinical studies, certain compositions of intestinal microbiota may be associated with onset and progression of OA, while others are linked to pain reduction in OA patients. Based on preclinical studies, there is evidence to suggest that the gut microbiota could play a significant role in the development and progression of OA. However, due to the scarcity of clinical studies, the exact mechanism linking the gut microbiota and OA remains unclear. Further research is necessary to evaluate specific gut microbiota compositions, potential pathogens, and their corresponding signaling pathways that contribute to the onset and progression of OA. This will help to validate the potential of targeting gut microbiota for treating OA patients.


Assuntos
Microbioma Gastrointestinal , Microbiota , Osteoartrite , Animais , Humanos , Osteoartrite/terapia , Bases de Dados Factuais , Lactobacillus , Dor
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069274

RESUMO

Musculoskeletal frailty-a common and debilitating condition linked to aging and chronic diseases-presents a major public health issue. In vivo models have become a key tool for researchers as they investigate the condition's underlying mechanisms and develop effective interventions. This systematic review examines the current body of research on in vivo models of musculoskeletal frailty, without any time constraints. To achieve this aim, we utilized three electronic databases and incorporated a total of 11 studies. Our investigation delves into varied animal models that simulate specific features of musculoskeletal frailty, including muscle loss, bone density reduction, and functional decline. Furthermore, we examine the translational prospects of these models in augmenting our comprehension of musculoskeletal frailty and streamlining the production of groundbreaking therapeutic approaches. This review provides significant insights and guidance for healthcare researchers and practitioners who aim to combat musculoskeletal frailty, ultimately enhancing the quality of life for older adults and individuals affected by this condition.


Assuntos
Fragilidade , Humanos , Idoso , Qualidade de Vida , Envelhecimento/fisiologia , Idoso Fragilizado
6.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511617

RESUMO

Recently, our group described the application of vertebral bone marrow (vBMA) clot as a cell therapy strategy for spinal fusion. Its beneficial effects were confirmed in aging-associated processes, but the influence of gender is unknown. In this study, we compared the biological properties of vBMA clots and derived vertebral mesenchymal stem cells (MSCs) from female and male patients undergoing spinal fusion procedures and treated with vBMA clot. We analyzed the expression of growth factors (GFs) in vBMA clots and MSCs as well as morphology, viability, doubling time, markers expression, clonogenicity, differentiation ability, senescence factors, Klotho expression, and HOX and TALE gene profiles from female and male donors. Our findings indicate that vBMA clots and derived MSCs from males had higher expression of GFs and greater osteogenic and chondrogenic potential compared to female patients. Additionally, vBMA-clot-derived MSCs from female and male donors exhibited distinct levels of HOX and TALE gene expression. Specifically, HOXA1, HOXB8, HOXD9, HOXA11, and PBX1 genes were upregulated in MSCs derived from clotted vBMA from male donors. These results demonstrate that vBMA clots can be effectively used for spinal fusion procedures; however, gender-related differences should be taken into consideration when utilizing vBMA-clot-based studies to optimize the design and implementation of this cell therapy strategy in clinical trials.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Humanos , Masculino , Feminino , Medula Óssea/metabolismo , Diferenciação Celular , Genes Homeobox , Células-Tronco Mesenquimais/metabolismo , Coluna Vertebral , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células da Medula Óssea , Proliferação de Células , Células Cultivadas
7.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806306

RESUMO

To date, several in vivo models have been used to reproduce the onset and monitor the progression of osteoarthritis (OA), and guinea pigs represent a standard model for studying naturally occurring, age-related OA. This systematic review aims to characterize the guinea pig for its employment in in vivo, naturally occurring OA studies and for the evaluation of specific disease-modifying agents. The search was performed in PubMed, Scopus, and Web of Knowledge in the last 10 years. Of the 233 records screened, 49 studies were included. Results showed that within a relatively short period of time, this model develops specific OA aspects, including cartilage degeneration, marginal osteophytes formation, and subchondral bone alterations. Disease severity increases with age, beginning at 3 months with mild OA and reaching moderate-severe OA at 18 months. Among the different strains, Dunkin Hartley develops OA at a relatively early age. Thus, disease-modifying agents have mainly been evaluated for this strain. As summarized herein, spontaneous development of OA in guinea pigs represents an excellent model for studying disease pathogenesis and for evaluating therapeutic interventions. In an ongoing effort at standardization, a detailed characterization of specific OA models is necessary, even considering the main purpose of these models, i.e., translatability to human OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/patologia , Modelos Animais de Doenças , Cobaias , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/terapia
8.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012173

RESUMO

Sheep ovariectomy (OVX) alone or associated to steroid therapy, deficient diet, or hypothalamic-pituitary disconnection has proven to be of critical importance for osteoporosis research in orthopedics. However, the impact of specific variables, such as breed, age, diet, time after OVX, and other variables, should be monitored. Thus, the design of comparative studies is mandatory to minimize the impact of these variables or to recognize the presence of unwanted variables as well as to better characterize bone remodeling in this model. Herein, we conducted a systematic review of the last 10 years on PubMed, Scopus, and Web of Knowledge considering only studies on OVX sheep where a control group was present. Of the 123 records screened, 18 studies were included and analyzed. Results showed that (i) Merino sheep are the most exploited breed; (ii) 5-6 years of age is the most used time for inducing OVX; (iii) ventral midline laparotomy is the most common approach to induce OVX; (iv) OVX associated to steroid therapy is the most widely used osteoporosis model; and (v) success of OVX was mostly verified 12 months after surgery. In detail, starting from 12 months after OVX a significant decline in bone mineral density and in microarchitectural bone parameters as well as in biochemical markers were detected in all studies in comparison to control groups. Bone alteration was also site-specific on a pattern as follows: lumbar vertebra, femoral neck, and ribs. Before 12 months from OVX and starting from 3-5 months, microarchitectural bone changes and biochemical marker alterations were present when osteoporosis was induced by OVX associated to steroid therapy. In conclusion, OVX in sheep influence bone metabolism causing pronounced systemic bone loss and structural deterioration comparable to the situation found in osteoporosis patients. Data for treating osteoporosis patients are based not only on good planning and study design but also on a correct animal use that, as suggested by 3Rs principles and by ARRIVE guidelines, includes the use of control groups to be directly contrasted with the experimental group.


Assuntos
Osteoporose , Animais , Densidade Óssea , Remodelação Óssea , Modelos Animais de Doenças , Feminino , Humanos , Osteoporose/etiologia , Osteoporose/metabolismo , Ovariectomia/efeitos adversos , Esteroides
9.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682677

RESUMO

BACKGROUND: Bisphosphonates are widely employed drugs for the treatment of pathologies with high bone resorption, such as osteoporosis, and display a great affinity for calcium ions and apatitic substrates. Here, we aimed to investigate the potentiality of zoledronate functionalized hydroxyapatite nanocrystals (HAZOL) to promote bone regeneration by stimulating adhesion, viability, metabolic activity and osteogenic commitment of human bone marrow derived mesenchymal stromal cells (hMSCs). METHODS: we adopted an advanced three-dimensional (3D) in vitro fracture healing model to study porous scaffolds: hMSCs were seeded onto the scaffolds that, after three days, were cut in halves and unseeded scaffolds were placed between the two halves. Scaffold characterization by X-ray diffraction, transmission and scanning electron microscopy analyses and cell morphology, viability, osteogenic differentiation and extracellular matrix deposition were evaluated after 3, 7 and 10 days of culture. RESULTS: Electron microscopy showed a porous and interconnected structure and a uniform cell layer spread onto scaffolds. Scaffolds were able to support cell growth and cells progressively colonized the whole inserts in absence of cytotoxic effects. Osteogenic commitment and gene expression of hMSCs were enhanced with higher expressions of ALPL, COL1A1, BGLAP, RUNX2 and Osterix genes. CONCLUSION: Although some limitations affect the present study (e.g., the lack of longer experimental times, of mechanical stimulus or pathological microenvironment), the obtained results with the adopted experimental setup suggested that zoledronate functionalized scaffolds (GHAZOL) might sustain not only cell proliferation, but positively influence osteogenic differentiation and activity if employed in bone fracture healing.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Medula Óssea , Células da Medula Óssea , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Ácido Zoledrônico/farmacologia
10.
Cell Mol Life Sci ; 77(20): 3913-3944, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32285137

RESUMO

Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.


Assuntos
Neoplasias/patologia , Animais , Humanos , Modelos Biológicos , Microambiente Tumoral/fisiologia
11.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576172

RESUMO

Global data correlate severe vitamin D deficiency with COVID-19-associated coagulopathy, further suggesting the presence of a hypercoagulable state in severe COVID-19 patients, which could promote thrombosis in the lungs and in other organs. The feedback loop between COVID-19-associated coagulopathy and vitamin D also involves platelets (PLTs), since vitamin D deficiency stimulates PLT activation and aggregation and increases fibrinolysis and thrombosis. Vitamin D and PLTs share and play specific roles not only in coagulation and thrombosis but also during inflammation, endothelial dysfunction, and immune response. Additionally, another 'fil rouge' between vitamin D and PLTs is represented by their role in mineral metabolism and bone health, since vitamin D deficiency, low PLT count, and altered PLT-related parameters are linked to abnormal bone remodeling in certain pathological conditions, such as osteoporosis (OP). Hence, it is possible to speculate that severe COVID-19 patients are characterized by the presence of several predisposing factors to bone fragility and OP that may be monitored to avoid potential complications. Here, we hypothesize different pervasive actions of vitamin D and PLT association in COVID-19, also allowing for potential preliminary information on bone health status during COVID-19 infection.


Assuntos
Plaquetas/imunologia , COVID-19/complicações , Osteoporose/imunologia , Trombose/imunologia , Deficiência de Vitamina D/imunologia , Vitamina D/metabolismo , Plaquetas/metabolismo , Remodelação Óssea/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Retroalimentação Fisiológica , Humanos , Osteoporose/sangue , Ativação Plaquetária/imunologia , Contagem de Plaquetas , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Trombose/sangue , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações
12.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671114

RESUMO

Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of i) osteoblasts and chondrocytes genes expression, ii) joint inflammation cytokines releases and iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA.


Assuntos
Conexina 43/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Osteoartrite/patologia , Osteoblastos/patologia , Fator de Transcrição Sp1/metabolismo , Adulto , Idoso , Células Cultivadas , Conexina 43/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoblastos/metabolismo , Prognóstico , Transdução de Sinais , Fator de Transcrição Sp1/genética
13.
Platelets ; 31(5): 627-632, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32397915

RESUMO

Coronavirus disease 2019 (COVID-19) is a new infectious disease that currently lacks standardized and established laboratory markers to evaluate its severity. In COVID-19 patients, the number of platelets (PLTs) and dynamic changes of PLT-related parameters are currently a concern. The present paper discusses the potential link between PLT parameters and COVID-19. Several studies have identified a link between severe COVID-19 patients and specific coagulation index, in particular, high D-dimer level, prolonged prothrombin time, and low PLT count. These alterations reflect the hypercoagulable state present in severe COVID-19 patients, which could promote microthrombosis in the lungs, as well as in other organs. Further information and more advanced hematological parameters related to PLTs are needed to better estimate this link, also considering COVID-19 patients at different disease stages and stratified in different cohorts based on preexisting co-morbidity, age, and gender. Increasing the understanding of PLT functions in COVID-19 will undoubtedly improve our knowledge on disease pathogenesis, clinical management, and therapeutic options, but could also lead to the development of more precise therapeutic strategies for COVID-19 patients.


Assuntos
Betacoronavirus , Plaquetas/fisiologia , Infecções por Coronavirus/sangue , Pandemias , Pneumonia Viral/sangue , Trombofilia/etiologia , Enzima de Conversão de Angiotensina 2 , Anticoagulantes/administração & dosagem , Anticoagulantes/uso terapêutico , Biomarcadores/sangue , Plaquetas/ultraestrutura , COVID-19 , Moléculas de Adesão Celular/metabolismo , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Citocinas/metabolismo , Coagulação Intravascular Disseminada/etiologia , Interações Medicamentosas , Células Endoteliais/patologia , Endotélio Vascular/patologia , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Inflamação , Pulmão/patologia , Peptidil Dipeptidase A/fisiologia , Contagem de Plaquetas , Testes de Função Plaquetária , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Tempo de Protrombina , Receptores Virais/fisiologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/prevenção & controle , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/sangue , Síndrome Respiratória Aguda Grave/patologia , Trombofilia/sangue , Trombofilia/tratamento farmacológico , Trombose Venosa/epidemiologia , Trombose Venosa/etiologia , Trombose Venosa/patologia , Trombose Venosa/prevenção & controle
14.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143494

RESUMO

Background: With the increase in aging population, the rising prevalence of osteoporosis (OP) has become an important medical issue. Accumulating evidence showed a close relationship between OP and hematopoiesis and emerging proofs revealed that platelets (PLTs), unique blood elements, rich in growth factors (GFs), play a critical role in bone remodeling. The aim of this review was to evaluate how PLT features, size, volume, bioactive GFs released, existing GFs in PLTs and PLT derivatives change and behave during OP. Methods: A systematic search was carried out in PubMed, Scopus, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases to identify preclinical and clinical studies in the last 10 years on PLT function/features and growth factor in PLTs and on PLT derivatives during OP. The methodological quality of included studies was assessed by QUIPS tool for assessing risk of bias in the clinical studies and by the SYRCLE tool for assessing risk of bias in animal studies. Results: In the initial search, 2761 studies were obtained, only 47 articles were submitted to complete reading, and 23 articles were selected for the analysis, 13 on PLT function/features and growth factor in PLTs and 10 on PLT derivatives. Risk of bias of almost all animal studies was high, while the in the clinical studies risk of bias was prevalently moderate/low for the most of the studies. The majority of the evaluated studies highlighted a positive correlation between PLT size/volume and bone mineralization and an improvement in bone regeneration ability by using PLTs bioactive GFs and PLT derivatives. Conclusions: The application of PLT features as OP markers and of PLT-derived compounds as therapeutic approach to promote bone healing during OP need to be further confirmed to provide clear evidence for the real efficacy of these interventions and to contribute to the clinical translation.


Assuntos
Plaquetas/metabolismo , Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteoporose/sangue , Animais , Preservação de Sangue , Proliferação de Células , Humanos , Inflamação , Camundongos , Células NIH 3T3 , Osteoporose/terapia , Reprodutibilidade dos Testes
15.
J Cell Physiol ; 234(2): 1588-1605, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144075

RESUMO

Galectins are members of the animal lectin family that bind to the ß-galactoside-containing carbohydrate moieties of glycoconjugates. They seem to have an important role in the pathophysiology of several diseases, including arthritis. Osteoarthritis (OA) and rheumatoid arthritis (RA) are chronic conditions with few or no available therapies. In this context, galectins could provide a novel opportunity, but the precise role and mechanism of their involvement in arthritis are still not fully understood. This descriptive systematic literature review summarizes in vitro, in vivo, and clinical studies that analyzed and examined the role and mechanism of action of galectins in arthritis to highlight and clarify their possible translation implication. This review yielded promising evidence that individual galectins, in particular galectin-1, -3, and -9, could play positive or negative roles in the pathogenesis of arthritis, especially in RA and OA. It also emphasized the cell-dependent role of these galectins. This is particularly true for galectin-1, which was shown to have a protective anti-inflammatory role in RA, while it seemed to be associated with cartilage degeneration in OA. In summary, this review underlined that manipulation of certain galectins can suppress or aggravate disease symptoms in arthritis animal models, demonstrating the therapeutic potential of galectins for the treatment of RA and OA. Nevertheless, despite the fact that galectin therapy and therapies acting on galectin expression seem to be an interesting and important opportunity for research, we highlighted that further investigation is necessary to carefully evaluate their potential clinical implications in arthritis.


Assuntos
Artrite/metabolismo , Galectinas/metabolismo , Articulações/metabolismo , Pesquisa Translacional Biomédica , Animais , Antirreumáticos/uso terapêutico , Artrite/fisiopatologia , Artrite/terapia , Galectinas/uso terapêutico , Humanos , Articulações/efeitos dos fármacos , Articulações/fisiopatologia , Prognóstico , Transdução de Sinais
16.
J Cell Physiol ; 234(11): 20046-20056, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30950062

RESUMO

Despite alternatives to autogenous bone graft for spinal fusion have been investigated, it has been shown that osteoconductive materials alone do not give a rate of fusion comparable with autogenous bone. This study analyzed a strontium substituted ß-tricalcium phosphate (Sr-ßTCP) associated with syngeneic, unexpanded, and undifferentiated mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ADSC) as a new tissue engineering approach for spinal fusion procedures. A posterolateral fusion was performed in 15 ovariectomized (OVX) and 15 sham-operated (SHAM) Inbred rats. Both SHAM and OVX animals were divided into three groups: Sr-ßTCP, Sr-ßTCP + BMCSs, and Sr-ßTCP + ADSCs. Animals were euthanized 8 weeks after surgery and the spines evaluated by manual palpation, micro-CT, and histology. For both SHAM and OVX animals, the fusion tissue in the Sr-ßTCP + BMSCs group was more solid. This effect was significantly higher in OVX animals by comparing the Sr-ßTCP + BMCSs group with Sr-ßTCP + ADSCs. Radiographical score, based on micro-CT 2D image, highlighted that the Sr-ßTCP + BMCSs group presented a similar fusion to Sr-ßTCP and higher than Sr-ßTCP + ADSCs in both SHAM and OVX animals. Micro-CT 3D parameters did not show significant differences among groups. Histological score showed significantly higher fusion in Sr-ßTCP + BMSCs group than Sr-ßTCP and Sr-ßTCP + ADSCs, for both SHAM and OVX animals. In conclusion, our results suggest that addition of BMSCs to a Sr-ßTCP improve bone formation and fusion, both in osteoporotic and nonosteoporotic animal, whereas spinal fusion is not enhanced in rats treated with Sr-ßTCP + ADSCs. Thus, for conducting cells therapy in spinal surgery BMSCs still seems to be a better choice compared with ADSCs.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Estrôncio/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Feminino , Vértebras Lombares/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Osteoporose/tratamento farmacológico , Ovariectomia/métodos , Ratos , Fusão Vertebral/métodos , Engenharia Tecidual/métodos
17.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925808

RESUMO

The roles of low-intensity pulsed ultrasound (LIPUS) and microRNAs (miRNAs) on hMSCs commitments have already been investigated; however, the effects of the application of their co-treatments in an in vitro cell model are still unknown. Our previous studies demonstrated that (i) LIPUS modulated hMSCs cytoskeletal organization and (ii) miRNA-675-5p have a role in HIF-1α signaling modulation during hMSCs osteoblast commitment. We investigated for the first time the role of LIPUS as promoter tool for miRNA expression. Thanks to bioinformatic analysis, we identified miR-31-5p as a LIPUS-induced miRNA and investigated its role through in vitro studies of gain and loss of function. Results highlighted that LIPUS stimulation induced a hypoxia adaptive cell response, which determines a reorganization of cell membrane and cytoskeleton proteins. MiR-31-5p gain and loss of function studies, demonstrated as miR-31-5p overexpression, were able to induce hypoxic and cytoskeletal responses. Moreover, the co-treatments LIPUS and miR-31-5p inhibitor abolished the hypoxic responses including angiogenesis and the expression of Rho family proteins. MiR-31-5p was identified as a LIPUS-mechanosensitive miRNAs and may be considered a new therapeutic option to promote or abolish hypoxic response and cytoskeletal organization on hMSCs during the bone regeneration process.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Mesenquimais/efeitos da radiação , MicroRNAs/genética , Ondas Ultrassônicas , Regulação para Cima/efeitos da radiação , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia
18.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067635

RESUMO

Several biomaterials have recently been developed to address the challenge of osteochondral regeneration. Among these, chitosan holds promises both for cartilage and bone healing. The aim of this in vivo study was to evaluate the regeneration potential of a novel hybrid magnesium-doped hydroxyapatite (MgHA), collagen, chitosan-based scaffold, which was tested in a sheep model to ascertain its osteochondral regenerative potential, and in a rabbit model to further evaluate its ability to regenerate bone tissue. Macroscopic, microtomography, histology, histomorphometry, and immunohistochemical analysis were performed. In the sheep model, all analyses did not show significant differences compared to untreated defects (p > 0.05), with no evidence of cartilage and subchondral bone regeneration. In the rabbit model, this bone scaffold provided less ability to enhance tissue healing compared with a commercial bone scaffold. Moreover, persistence of scaffold material and absence of integration with connective tissue around the scaffolds were observed. These results raised some concerns about the osteochondral use of this chitosan composite scaffold, especially for the bone layer. Further studies are needed to explore the best formulation of chitosan-reinforced composites for osteochondral treatment.


Assuntos
Regeneração Óssea , Quitosana/análogos & derivados , Alicerces Teciduais/efeitos adversos , Animais , Cartilagem/efeitos dos fármacos , Colágeno/química , Durapatita/química , Masculino , Coelhos , Ovinos , Alicerces Teciduais/química
19.
J Cell Physiol ; 233(1): 291-301, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28240358

RESUMO

The dynamic metabolism and the numerous roles of bone tissue necessitate a suitable in vitro model to represent them. In order to investigate the interaction among the several cell types composing bone microenvironment, we studied a tri-culture model including human osteoblasts (OBs), osteoclasts (OCs), and endothelial cells (HUVEC). While OBs are essential for bone deposition and OCs for bone resorption, the vasculature is necessary to provide growth factors, nutrients, and oxygen in the mature tissue. The results of this study showed a strong mutual influence between OBs, OCs, and HUVEC in term of proliferation, viability, and activity (release of ALP, Coll I, OPG, RANKL, VEGF, CTSK, TGFß, and IL-6). The behavior of the single cultures demonstrated to be different compared to the bi- or tri-cultures and depending on the cell types involved: the coexistence of OBs and OCs stimulated the synthetic activity of both cell types, while the presence of HUVEC induced a stimulating role for OBs but mainly an inhibitory effect for OC. In addition, evidence of the effects of OBs and OCs on HUVEC is highlighted by their morphology: regular and able to "sketch" little vessels in presence of OBs, more disorganized and heterogeneous in presence of OCs. Taken together, these observations well characterize an advanced cellular model to be used as starting point for mimicking bone microenvironment in vivo, thus reducing the use of animals in the preclinical phase and offering a more reliable tool to test new and innovative biomaterials.


Assuntos
Remodelação Óssea , Comunicação Celular , Técnicas de Cultura de Células , Microambiente Celular , Células Endoteliais da Veia Umbilical Humana/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese , Biomarcadores/metabolismo , Linhagem Celular , Forma Celular , Sobrevivência Celular , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Fisiológica , Fenótipo , Fatores de Tempo
20.
J Cell Physiol ; 233(4): 2723-2732, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28639702

RESUMO

One of the methods employed to improve healing of damaged tissues is the use of cellular based therapies. A number of regenerative medicine based strategies, from in vitro expanded mesenchymal stem cells (MSCs) to "one-step" procedures using bone marrow (BM) in toto (BM aspirate; BMA) or BM concentrate (BMC), have been developed. Recently, orthopedic researchers focused their attention on the clinical therapeutic potential of BMC and BMA for musculoskeletal regeneration. BMA is reported as an excellent source of cells and growth factors. However, the quality of BM harvest and aspirate is extremely technique-dependent and, due to the presence of megakaryocytes and platelets, BMA is prone to clot. BMA clot formation is usually considered a complication hampering the procedures on both BMC preparation and MSC expansion. Therefore, different protocols have been developed to avoid and/or degrade clots. However, from a biological point of view there is a strong rationale for the use of BMA clot for tissue engineering strategies. This descriptive systematic literature review summarizes preclinical and clinical studies dealing the use of BMA clot for orthopedic procedures and provided some evidence supporting its use as a cell based therapy for cartilage and bone regeneration. Despite these results, there are still few preclinical and clinical studies that carefully evaluate the safety and efficacy of BMA clot in orthopedic procedures. Thus, implementing biological knowledge and both preclinical and clinical studies could help researchers and clinicians to understand if BMA clots can really be considered a possible therapeutic tool.


Assuntos
Medula Óssea/patologia , Sistema Musculoesquelético/metabolismo , Regeneração/fisiologia , Animais , Biópsia por Agulha , Coagulação Sanguínea , Ensaios Clínicos como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA