Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1808(12): 2933-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21945404

RESUMO

Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin channels inserted into a planar Bilayer Lipid Membrane (BLM), and demonstrate that these pore-forming proteins constitute memory elements that manifest gating bi-stability in response to variable external voltages. The hysteresis in macroscopic currents dynamically changes when the time scale of the voltage variation is smaller or comparable to the characteristic conformational equilibration time, and unexpectedly persists for extremely slow-changing external voltage stimuli. The assay performed on a single lysenin channel reveals that hysteresis is a fundamental feature of the individual channel unit and an intrinsic component of the gating mechanism. The investigation conducted at different temperatures reveals a thermally stable reopening process, suggesting that major changes in the energy landscape and kinetics diagram accompany the conformational transitions of the channels. Our work offers new insights on the dynamics of pore-forming proteins and provides an understanding of how channel proteins may form an immediate record of the molecular history which then determines their future response to various stimuli. Such new functionalities may uncover a link between molecular events and macroscopic processing and transmission of information in cells, and may lead to applications such as high density biologically-compatible memories and learning networks.


Assuntos
Ativação do Canal Iônico , Toxinas Biológicas/química , Probabilidade
2.
Anal Bioanal Chem ; 401(6): 1871-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21818682

RESUMO

Transmembrane protein transporters possessing binding sites for ions, toxins, pharmaceutical drugs, and other molecules constitute excellent candidates for developing sensitive and selective biosensing devices. Their attractiveness for analytical purposes is enhanced by the intrinsic amplification capabilities shown when the binding event leads to major changes in the transportation of ions or molecules other than the analyte itself. The large-scale implementation of such transmembrane proteins in biosensing devices is limited by the difficulties encountered in inserting functional transporters into artificial bilayer lipid membranes and by the limitations in understanding and exploiting the changes induced by the interaction with the analyte for sensing purposes. Here, we show that lysenin, a pore-forming toxin extracted from earthworm Eisenia foetida, which inserts stable and large conductance channels into artificial bilayer lipid membranes, functions as a multivalent ion-sensing device. The analytical response consists of concentration and ionic-species-dependent macroscopic conductance inhibition most probably linked to a ligand-induced gating mechanism. Multivalent ion removal by chelation or precipitation restores, in most cases, the initial conductance and demonstrates reversibility. Changes in lipid bilayer membrane compositions leading to the absence of voltage-induced gating do not affect the analytical response to multivalent ions. Microscopic current analysis performed on individual lysenin channels in the presence of Cu(2+) revealed complex open-closed transitions characterized by unstable intermediate sub-conducting states. Lysenin channels provide an analytical tool with a built-in sensing mechanism for inorganic and organic multivalent ions, and the excellent stability in an artificial environment recommend lysenin as a potential candidate for single-molecule detection and analysis.


Assuntos
Técnicas Biossensoriais/métodos , Íons/análise , Oligoquetos/metabolismo , Toxinas Biológicas/metabolismo , Animais , Técnicas Eletroquímicas/métodos , Íons/metabolismo , Bicamadas Lipídicas/metabolismo , Sensibilidade e Especificidade
3.
Biophys Chem ; 152(1-3): 40-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20724059

RESUMO

We report the effect of different ions on the conducting properties of lysenin channels inserted into planar lipid bilayer membranes. Our observations indicated that multivalent ions inhibited the lysenin channels conductance in a concentration dependent manner. The analysis performed on single channels revealed that multivalent ions induced reversible sub-conducting or closed states depending on the ionic charge and size. Good agreement is reported between experimental results and a theoretical model that is proposed to describe the interaction between divalent ions and lysenin channels as a simple isothermal absorption process.


Assuntos
Toxinas Biológicas/química , Absorção , Transporte de Íons , Íons/química , Bicamadas Lipídicas/química , Metais/química , Toxinas Biológicas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA