Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 323(3): 979-89, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17761498

RESUMO

Tryptophan 2,3-dioxygenase (TDO), a liver-specific cytosolic hemoprotein, is the rate-limiting enzyme in L-tryptophan catabolism and thus a key serotonergic determinant. Glucocorticoids transcriptionally activate the TDO gene with marked enzyme induction. TDO is also regulated by heme, its prosthetic moiety, as its expression and function are significantly reduced after acute hepatic heme depletion. Here we show in primary rat hepatocytes that this impairment is not due to faulty transcriptional activation of the TDO gene but rather due to its posttranscriptional regulation by heme. Accordingly, in acutely heme-depleted hepatocytes, the de novo synthesis of TDO protein is markedly decreased (>90%) along with that of other hepatic proteins. This global suppression of de novo hepatic protein syntheses in these heme-depleted cells is associated with a significantly enhanced phosphorylation of the alpha-subunit of the eukaryotic initiation factor eIF2 (eIF2alpha), as monitored by the phosphorylated eIF2alpha/total eIF2alpha ratio. Heme supplementation reversed these effects, indicating that heme regulates TDO induction by functional control of an eIF2alpha kinase. A cDNA was cloned from heme-depleted rat hepatocytes, and DNA sequencing verified its identity to the previously cloned rat brain heme-regulated inhibitor (HRI). Proteomic, biochemical, and/or immunoblotting analyses of the purified recombinant protein and the immunoaffinity-captured hepatic protein confirmed its identity as a rat heme-sensitive eIF2alpha kinase. These findings not only document that a hepatic HRI exists and is physiologically relevant but also implicate its translational shut-off of key proteins in the pathogenesis and symptomatology of the acute hepatic heme-deficient conditions clinically known as the hepatic porphyrias.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Heme/deficiência , Hepatócitos/efeitos dos fármacos , Triptofano Oxigenase , eIF-2 Quinase/fisiologia , Animais , Células Cultivadas , Cromatografia Líquida , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Indução Enzimática , Escherichia coli/genética , Heme/metabolismo , Hepatócitos/enzimologia , Masculino , Biossíntese de Proteínas , Protoporfirinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Espectrometria de Massas em Tandem , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/biossíntese , eIF-2 Quinase/genética
2.
Protein Sci ; 19(3): 458-74, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20054829

RESUMO

Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD(+)/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H(2)O(2)), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct.


Assuntos
Antituberculosos/metabolismo , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Farmacorresistência Bacteriana/genética , Isoniazida/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , NAD/metabolismo , Peroxidase/genética , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catalase/química , Catalase/genética , Domínio Catalítico , Humanos , Isoniazida/farmacologia , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Conformação Proteica , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA