Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 329-345, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150352

RESUMO

Herein, metal-organic framework (MOF)-based adsorbents are designed with distinct hard and soft metal building units, namely, [Co2ICoII(PD)2(BP)] (Co_PD-BP) and [Cu2ICuII(PD)2(BP)] (Cu_PD-BP), where H2PD = pyrazine-1,4-diide-2,3-dicarboxylic acid and BP = 4,4'-bipyridine. The designed MOFs were characterized via spectral and SCXRD techniques, which confirm the mixed-valent states (+1 and +2) of the metal ions. Topological analysis revealed the rare ths and gwg topologies for Co MOF, while Cu-MOF exhibits a unique 8T21 topology in the 8-c net (point symbol for net: {424·64}). Moreover, severe environmental issues can be resolved by effectively removing heterocyclic organosulfur compounds from fuels via adsorptive desulfurization. Further, the developed MOFs were investigated for sulfur removal via adsorptive desulfurization from a model fuel consisting of dibenzothiophene (DBT), benzothiophene (BT), and thiophene (T) in the liquid phase using n-octane as a solvent. The findings revealed that Cu_PD-BP effectively removes the DBT with a removal efficiency of 86% at 300 ppm and an operating temperature of 25 °C, with a recyclability of up to four cycles. The adsorption kinetic analysis showed that the pseudo-first-order model could fit better with the experimental data indicating the physisorption process. Further, the studies revealed that adsorption capacity increased with the increasing initial DBT concentration with a remarkable capacity of 70.5 mg/g, and the adsorption process was well described by the Langmuir isotherm. The plausible reason behind the enhanced removal efficiency shown by Cu_PD-BP as compared to Co_PD-BP could be the soft-soft interactions between soft sulfur and soft Cu metal centers. Interestingly, density functional theory (DFT) studies were done in order to predict the mechanism of binding of thiophenic compounds with Cu_PD-BP, which further ascertained that along with other interactions, the S···π and S···Cu interactions predominate, resulting in a high uptake of DBT as compared to others. In essence, Cu_PD-BP turns out to be a promising adsorbent in the field of fuel desulfurization for the benefit of mankind.

2.
ACS Omega ; 8(1): 1220-1231, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643482

RESUMO

Herein, [Nd(NO3)3(H2pzdca)] n (MA-1) was synthesized from a reaction of 2,3-pyrazinedicarboxylic acid [H2Pzdca] as an organic linker with salt of Nd(III) under solvothermal conditions. The detailed structural analysis for crystals was performed utilizing single-crystal X-ray diffraction (SCXRD). After that, the neodymium-based coordination polymer (MA-1) crystal was directly generated upon the surface of functionalized carbon nanotubes (F-CNTs) through bonds or affinity between F-CNTs and MA-1 via the solvothermal approach. Meanwhile, the existence of F-CNTs does not affect the production of MA-1 crystals. FT-IR, PXRD, SEM, TEM, and SCXRD studies were used to characterize the crystalline material, MA-1 and MA-1@CNT. To investigate the MA-1@CNT sensing properties, Pb(II), As(III), Cr(VI), and nitrobenzene (NB) were utilized as analytes. It is worth mentioning that MA-1@CNT developed as a susceptible sensor exhibits a fluorescence "turn-on" response for Pb(II) and As(III) ions, while a fluorescence "turn-off" response in the case of Cr(VI) and NB with significantly low limit of detection (LOD) values of 15.9 for Pb(II), 16.0 for As(III), 76.9 for Cr(VI), and 21.1 nM for NB, which are comparable with the lowest LOD available in the literature. Furthermore, MA-1@CNT could be conveniently regenerated and reused for at least three cycles by simply filtering and washing with water several times. The sensing mechanism is ascribed to the inner filter effect owing to the overlap between the emission and/or excitation bands of MA-1@CNT with the absorption bands of Cr(VI) and NB. In contrast, the fluorescence enhancement in the case of Pb(II) and As(III) could be correlated to the chelation-enhanced fluorescence phenomenon. These results indicate that MA-1@CNT is an ideal sensor for Pb(II), As(III), Cr(VI), and NB recognition.

3.
ACS Omega ; 8(13): 12232-12245, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033869

RESUMO

Nowadays, the fabrication of 2D metal-organic nanosheets (2D MONs) has entered the research arena fascinating researchers worldwide. However, a lack of efficient and facile methods has remained a bottleneck for the manufacturing of these 2D MONs. Herein, a 2D metal-organic framework (MOF), i.e., 2D Cu-MOF, was synthesized using a facile and convenient stirring method by using 4,4'-trimethylenedipyridine (TMDP) as an organic linker. The as-prepared MOF was characterized in detail and based on single crystal X-ray diffraction analysis, it was established that tangled layers in the 2D Cu-MOF are interconnected to produce thick strands. These tangled layers could be easily separated via ultrasonication-induced liquid phase exfoliation (UILPE) to give the 2D Cu-MON as illustrated through Tyndall light scattering and exhaustive microscopic exploration such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The application of this 2D Cu-MON was assessed in the field of drug delivery revealing exceptional drug loading for the drug lansoprazole (LPZ) by 2D Cu-MONs as well as drug release in the acidic and neutral medium demonstrating that the 2D Cu-MON is an excellent carrier for antiulcer drug delivery. For environmental protection, the application of 2D Cu-MON was also examined toward the removal of various cationic and anionic dyes with excellent selectivity toward cationic dye removal. The plausible mechanism for dye removal indicated the involvement of cation-π and π-π interactions, for the effective adsorption of cationic dyes as well as a increase in the surface area of 2D Cu-MON by UILPE. Remarkably, the high drug loading and dye removal are imputed to the increase in surface area by UILPE. In a nutshell, the developed 2D Cu-MON will prove to be beneficial for application in the field of drug delivery as well as for wastewater treatment.

4.
RSC Adv ; 11(28): 16881-16891, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479719

RESUMO

There is an increasing demand for monitoring environmental pollutants and the control requires new sensing materials with better sensitivity, selectivity and reliability. In this study, a series of Co7 clusters incorporating various flexible polyhydroxyamine ligands are explored, with the first report of thiocyanate recognition triggered by crystal formation using a Co7 crystal (1). For this, we have fortunately synthesized three new mixed metal Co7 clusters with fascinating structural features. The clusters were characterized by spectroscopic and single crystal X-ray diffraction methods and later by DFT calculations. Due to its better emission spectrum, 1 was further utilized for evaluating its sensing ability towards various anions in water. Surprisingly, 1 shows better quenching ability towards the recognition of SCN- with a better binding constant. The luminescence quenching towards SCN- detection was further verified by the single crystal method, HSAB principle (symbiosis) and theoretical calculations such as DFT studies. The SCXRD data clearly suggest that the Co7 (1) can be converted into Co14 (1a) by direct reaction with NaSCN under ambient conditions. Besides the soft/hard acid-base concept (symbiosis), the energies of formation, and Co-NCS and Co-OH2 bond energies (as unravelled by DFT) are responsible for this transformation. Therefore, 1 can be used as a selective and sensitive sensor for the detection of thiocyanate anions based on the fluorescence amplification and quenching method. Further, the designed cluster has also been utilized to detect anions in human blood samples to differentiate a smoker and a non-smoker. It has been concluded that the samples of smokers have a high degree of thiocyanate (∼12 or 9.5 mg L-1) in comparison to those of non-smokers (2-3 mg L-1). Thus, this kind of cluster material has high potentiality in the field of bio-medical science in future endeavours for identification of the extent of thiocyanate content in smokers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA