Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540031

RESUMO

Two separate feeding trials were undertaken to benchmark a series of commercial diets and determine the nutrient and energy apparent digestibility coefficients of a variety of protein-based feed ingredients when fed to sobaity seabream, Sparidentex hasta. In Experiment 1, triplicate groups of fish (initial body weight: 330.5 ± 2.6 g) were fed with one of three locally available diets containing crude protein (CP) levels ranging from 44 to 46% of dry matter (DM), each with ~12% crude fat. Fish grew at around 3.2 g day-1 with a specific growth rate (SGR) of 0.7% day-1. Both the feed conversion ratio (FCR) and protein efficiency ratio (PER) were significantly better in fish fed diets, which contained the highest (46.4%) crude protein level. Overall, the data from these preliminary studies suggest that the best performance by sobaity seabream was obtained with a diet containing 46% crude protein, 20 MJ/kg, and a protein-to-energy ratio of 23 mg/kJ. In Experiment 2, fish with an initial body weight of 319 ± 7 g were held in 11 tanks and fed reference (D1) and test diets (D2-D11) for 7 days before fecal collection. This process was repeated twice in a blocking arrangement to generate three replicates. Each of the ten test diets contained 30% of a test ingredient, with the remaining 70% proportionally identical to the D1 diet. Diet apparent digestibility coefficients (ADCs) were measured, and the diet ADCs were then used to derive the protein and energy ADCs for the individual test ingredients. Ingredient protein ADC ranged between 75.5 and 93.9%, while ingredient energy ADC ranged between 66.8 and 81.2%.

2.
Comp Biochem Physiol A Mol Integr Physiol ; 164(2): 399-409, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202658

RESUMO

The potential muscle regeneration after nutritional dystrophy caused by high dietary DHA contents in fish and the physiological pathways involved are still unknown. To better understand this process, an experiment was conducted for 3 weeks in 14 day-old European sea bass larvae using different DHA ratios (1 or 5%). After this period, part of the larvae fed 5% DHA diet was switched to 1% DHA diet ("wash-out") for another 2 weeks. Larvae fed 5% DHA diet showed altered oxidative status as indicated by the highest TBARS values, antioxidant enzymes (AOE) expression and incidence of muscular lesions. Accordingly, "washed-out" larvae showed lower dry weight and α-TOH content. IGF-I gene expression was elevated in 5% DHA larvae at 35 dph, suggesting increased muscle mitogenesis that was corroborated by the increase in myosin heavy chain expression. It can be concluded that high dietary DHA contents alter the oxidative status and cause muscular lesions in European sea bass larvae, with morphological and molecular aspects of mammalians muscular degenerative disease.


Assuntos
Bass , Ácidos Docosa-Hexaenoicos/administração & dosagem , Larva , Músculos , Animais , Antioxidantes/metabolismo , Bass/crescimento & desenvolvimento , Bass/fisiologia , Vias Biossintéticas , Dieta , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Músculos/efeitos dos fármacos , Músculos/patologia , Músculos/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
3.
Br J Nutr ; 108(12): 2115-28, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22409905

RESUMO

The objective of the present study was to determine the effect of Se inclusion in high-DHA and vitamin E microdiets (5 g DHA/100 g dry weight and 300 mg vitamin E/100 g dry weight; 5 g DHA/100 g dry weight and 300 mg vitamin E/100 g dry weight supplemented with Se) in comparison with a control diet (1 g DHA/100 g dry weight and 150 mg vitamin E/100 g dry weight) on sea bass larval growth, survival, biochemical composition, malonaldehyde (MDA) content, muscle morphology and antioxidant enzymes (AOE), insulin-like growth factors (IGF) and myosin expression. For a given DHA and vitamin E dietary content, Se inclusion favoured larval total length and specific growth rate, and reduced the incidence of muscular lesions, MDA contents and AOE gene expression. In contrast, IGF gene expression was elevated in the 5/300 larvae, suggesting an increased muscle mitogenesis that was corroborated by the increase in mRNA copies of myosin heavy chain. The results of the present study denoted the beneficial effect of Se not only in preventing oxidative stress, as a glutathione peroxidase cofactor, but probably due to other as yet unknown physiological functions.


Assuntos
Bass , Dieta/veterinária , Ácidos Docosa-Hexaenoicos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Animais , Aquicultura , Bass/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/prevenção & controle , Glutationa Peroxidase/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Larva/química , Larva/crescimento & desenvolvimento , Malondialdeído/análise , Microscopia Eletrônica de Transmissão , Músculos/metabolismo , Músculos/patologia , Cadeias Pesadas de Miosina/genética , RNA Mensageiro/análise , Selênio/análise , Superóxido Dismutase/genética , Vitamina E/administração & dosagem
4.
Lipids ; 47(12): 1193-207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23086553

RESUMO

Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (α-tocopherol, α-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5% DW) and α-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1% DHA DW and 1,500 mg/kg of α-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased α-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets.


Assuntos
Ácido Ascórbico/metabolismo , Bass/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Estresse Oxidativo , Vitamina E/química , Animais , Ácido Ascórbico/química , Bass/genética , Bass/metabolismo , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/química , Regulação da Expressão Gênica , Miosinas/genética , Reação em Cadeia da Polimerase em Tempo Real , Vitamina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA