Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 161(7): 1566-75, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26073943

RESUMO

The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.


Assuntos
Miócitos Cardíacos/citologia , Células Endoteliais/citologia , Coração/fisiologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Mesoderma/citologia , Miocárdio/citologia , Poliploidia , Datação Radiométrica
2.
Cell ; 156(5): 1072-83, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24561062

RESUMO

In most mammals, neurons are added throughout life in the hippocampus and olfactory bulb. One area where neuroblasts that give rise to adult-born neurons are generated is the lateral ventricle wall of the brain. We show, using histological and carbon-14 dating approaches, that in adult humans new neurons integrate in the striatum, which is adjacent to this neurogenic niche. The neuronal turnover in the striatum appears restricted to interneurons, and postnatally generated striatal neurons are preferentially depleted in patients with Huntington's disease. Our findings demonstrate a unique pattern of neurogenesis in the adult human brain.


Assuntos
Gânglios da Base/citologia , Neurogênese , Neurônios/citologia , Adulto , Animais , Gânglios da Base/patologia , Gânglios da Base/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Doença de Huntington/patologia , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Modelos Biológicos , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia
3.
Cell ; 159(4): 766-74, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417154

RESUMO

The myelination of axons by oligodendrocytes has been suggested to be modulated by experience, which could mediate neural plasticity by optimizing the performance of the circuitry. We have assessed the dynamics of oligodendrocyte generation and myelination in the human brain. The number of oligodendrocytes in the corpus callosum is established in childhood and remains stable after that. Analysis of the integration of nuclear bomb test-derived (14)C revealed that myelin is exchanged at a high rate, whereas the oligodendrocyte population in white matter is remarkably stable in humans, with an annual exchange of 1/300 oligodendrocytes. We conclude that oligodendrocyte turnover contributes minimally to myelin modulation in human white matter and that this instead may be carried out by mature oligodendrocytes, which may facilitate rapid neural plasticity.


Assuntos
Envelhecimento , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Isótopos de Carbono/análise , Criança , Pré-Escolar , Corpo Caloso/metabolismo , Humanos , Lactente , Pessoa de Meia-Idade , Plasticidade Neuronal , Armas Nucleares , Substância Branca/química , Substância Branca/metabolismo , Adulto Jovem
4.
Cell ; 153(6): 1219-1227, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746839

RESUMO

Adult-born hippocampal neurons are important for cognitive plasticity in rodents. There is evidence for hippocampal neurogenesis in adult humans, although whether its extent is sufficient to have functional significance has been questioned. We have assessed the generation of hippocampal cells in humans by measuring the concentration of nuclear-bomb-test-derived ¹4C in genomic DNA, and we present an integrated model of the cell turnover dynamics. We found that a large subpopulation of hippocampal neurons constituting one-third of the neurons is subject to exchange. In adult humans, 700 new neurons are added in each hippocampus per day, corresponding to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest decline during aging. We conclude that neurons are generated throughout adulthood and that the rates are comparable in middle-aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function.


Assuntos
Envelhecimento , Hipocampo/citologia , Hipocampo/fisiologia , Neurogênese , Neurônios/citologia , Adulto , Animais , Humanos , Camundongos , Modelos Biológicos , Neurônios/fisiologia , Datação Radiométrica/métodos
5.
Nature ; 566(7744): E9, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30723267

RESUMO

In this Letter, the vertical error bars were missing from Fig. 3b and 3c. This figure has been corrected online.

6.
Nature ; 566(7745): 538-542, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675058

RESUMO

Oligodendrocytes wrap nerve fibres in the central nervous system with layers of specialized cell membrane to form myelin sheaths1. Myelin is destroyed by the immune system in multiple sclerosis, but myelin is thought to regenerate and neurological function can be recovered. In animal models of demyelinating disease, myelin is regenerated by newly generated oligodendrocytes, and remaining mature oligodendrocytes do not seem to contribute to this process2-4. Given the major differences in the dynamics of oligodendrocyte generation and adaptive myelination between rodents and humans5-9, it is not clear how well experimental animal models reflect the situation in multiple sclerosis. Here, by measuring the integration of 14C derived from nuclear testing in genomic DNA10, we assess the dynamics of oligodendrocyte generation in patients with multiple sclerosis. The generation of new oligodendrocytes was increased several-fold in normal-appearing white matter in a subset of individuals with very aggressive multiple sclerosis, but not in most subjects with the disease, demonstrating an inherent potential to substantially increase oligodendrocyte generation that fails in most patients. Oligodendrocytes in shadow plaques-thinly myelinated lesions that are thought to represent remyelinated areas-were old in patients with multiple sclerosis. The absence of new oligodendrocytes in shadow plaques suggests that remyelination of lesions occurs transiently or not at all, or that myelin is regenerated by pre-existing, and not new, oligodendrocytes in multiple sclerosis. We report unexpected oligodendrocyte generation dynamics in multiple sclerosis, and this should guide the use of current, and the development of new, therapies.


Assuntos
Proliferação de Células , Esclerose Múltipla/patologia , Oligodendroglia/patologia , Adulto , Idade de Início , Envelhecimento/patologia , Envelhecimento/fisiologia , Estudos de Casos e Controles , Diferenciação Celular , Separação Celular , Feminino , Humanos , Masculino , Esclerose Múltipla/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Remielinização , Substância Branca/citologia , Substância Branca/metabolismo , Substância Branca/patologia
7.
PLoS Biol ; 17(10): e3000383, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31661488

RESUMO

Thymic involution and proliferation of naive T cells both contribute to shaping the naive T-cell repertoire as humans age, but a clear understanding of the roles of each throughout a human life span has been difficult to determine. By measuring nuclear bomb test-derived 14C in genomic DNA, we determined the turnover rates of CD4+ and CD8+ naive T-cell populations and defined their dynamics in healthy individuals ranging from 20 to 65 years of age. We demonstrate that naive T-cell generation decreases with age because of a combination of declining peripheral division and thymic production during adulthood. Concomitant decline in T-cell loss compensates for decreased generation rates. We investigated putative mechanisms underlying age-related changes in homeostatic regulation of CD4+ naive T-cell turnover, using mass cytometry to profile candidate signaling pathways involved in T-cell activation and proliferation relative to CD31 expression, a marker of thymic proximity for the CD4+ naive T-cell population. We show that basal nuclear factor κB (NF-κB) phosphorylation positively correlated with CD31 expression and thus is decreased in peripherally expanded naive T-cell clones. Functionally, we found that NF-κB signaling was essential for naive T-cell proliferation to the homeostatic growth factor interleukin (IL)-7, and reduced NF-κB phosphorylation in CD4+CD31- naive T cells is linked to reduced homeostatic proliferation potential. Our results reveal an age-related decline in naive T-cell turnover as a putative regulator of naive T-cell diversity and identify a molecular pathway that restricts proliferation of peripherally expanded naive T-cell clones that accumulate with age.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula/imunologia , Homeostase/imunologia , Timo/imunologia , Adulto , Idoso , Envelhecimento/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Linhagem da Célula/genética , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Humanos , Imunofenotipagem , Interleucina-7/genética , Interleucina-7/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/imunologia , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Transdução de Sinais , Timo/citologia , Timo/crescimento & desenvolvimento
8.
Nature ; 478(7367): 110-3, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21947005

RESUMO

Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring (14)C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.


Assuntos
Tecido Adiposo/metabolismo , Saúde , Metabolismo dos Lipídeos , Doenças Metabólicas/metabolismo , Adipócitos/química , Adipócitos/metabolismo , Tecido Adiposo/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Radioisótopos de Carbono/análise , Tamanho Celular , Senescência Celular , Criança , Pré-Escolar , Estudos de Coortes , DNA/química , Dislipidemias/metabolismo , Dislipidemias/patologia , Humanos , Hiperlipidemia Familiar Combinada/genética , Hiperlipidemia Familiar Combinada/metabolismo , Hiperlipidemia Familiar Combinada/patologia , Lipólise , Pessoa de Meia-Idade , Armas Nucleares , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Tempo , Triglicerídeos/análise , Triglicerídeos/metabolismo , Adulto Jovem
9.
Anal Chem ; 85(14): 6790-8, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23742277

RESUMO

Ever since the first publication of intracavity optogalvanic spectroscopy (ICOGS) in 2008, this novel technique for measuring the (14)C/(12)C ratio in carbon dioxide has rendered considerable attention. As a result, there are currently at least five different research groups pursuing research on ICOGS. With a claimed limit of detection of 10(-15) ((14)C/(12)C), i.e., in the same order as accelerator mass spectroscopy, achieved with a relatively inexpensive and uncomplicated table-top system, ICOGS has major scientific and commercial implications. However, during the past 5 years, no research group has been able to reproduce these results or present additional proof for ICOGS's capability of unambiguous (14)C detection, including the authors of the original publication. Starting in 2010, our group has set up a state-of-the-art ICOGS laboratory and has investigated the basic methodology of ICOGS in general and tried to reproduce the reported experiments in particular. We have not been able to reproduce the reported results concerning the optogalvanic signals dependence on (14)C concentration and wavelength and, ultimately, not seen any evidence of the capability of ICOGS to unambiguously detect (14)C at all. Instead, we have found indications that the reported results can be products of measurement uncertainties and mistakes. Furthermore, our results strongly indicate that the reported limit of detection is likely to be overestimated by at least 2 orders of magnitude, based on the results presented in the original publication. Hence, we conclude that the original reports on ICOGS cannot be confirmed and therefore must be in error.

10.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745322

RESUMO

Cardiomyocytes in the adult human heart show a regenerative capacity, with an annual renewal rate around 0.5%. Whether this regenerative capacity of human cardiomyocytes is employed in heart failure has been controversial. Using retrospective 14C birth dating we analyzed cardiomyocyte renewal in patients with end-stage heart failure. We show that cardiomyocyte generation is minimal in end-stage heart failure patients at rates 18-50 times lower compared to the healthy heart. However, patients receiving left ventricle support device therapy, who showed significant functional and structural cardiac improvement, had a >6-fold increase in cardiomyocyte renewal relative to the healthy heart. Our findings reveal a substantial cardiomyocyte regeneration potential in human heart disease, which could be exploited therapeutically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA